General Linear Problem of the Isomonodromic Deformation of Fuchsian Systems
Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 599-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

In contrast to nonresonance systems whose continuous deformations are always Schlesinger deformations, systems with resonances provide great possibilities for deformations. In this case, the number of continuous parameters of deformation, in addition to the location of the poles of the system, includes the data describing the Levelt structure of the system, or, in other words, the distribution of resonance directions in the space of solutions. The question of classifying the form and structure of deformations according to these parameters arises. In the present paper, we consider continuous isomonodromic deformations of Fuchsian systems, including those with respect to additional parameters, describe the corresponding linear problem, and present the Pfaff form of the linear problem of general continuous isomonodromic deformation of Fuchsian systems.
Keywords: Fuchsian equations and systems, Levelt normalization, gauge transformation, resonance singular point
Mots-clés : isomonodromic deformation, Pfaff form.
@article{MZM_2007_81_4_a12,
     author = {V. A. Poberezhnyi},
     title = {General {Linear} {Problem} of the {Isomonodromic} {Deformation} of {Fuchsian} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {599--613},
     publisher = {mathdoc},
     volume = {81},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a12/}
}
TY  - JOUR
AU  - V. A. Poberezhnyi
TI  - General Linear Problem of the Isomonodromic Deformation of Fuchsian Systems
JO  - Matematičeskie zametki
PY  - 2007
SP  - 599
EP  - 613
VL  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a12/
LA  - ru
ID  - MZM_2007_81_4_a12
ER  - 
%0 Journal Article
%A V. A. Poberezhnyi
%T General Linear Problem of the Isomonodromic Deformation of Fuchsian Systems
%J Matematičeskie zametki
%D 2007
%P 599-613
%V 81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a12/
%G ru
%F MZM_2007_81_4_a12
V. A. Poberezhnyi. General Linear Problem of the Isomonodromic Deformation of Fuchsian Systems. Matematičeskie zametki, Tome 81 (2007) no. 4, pp. 599-613. http://geodesic.mathdoc.fr/item/MZM_2007_81_4_a12/

[1] P. G. Zograf, L. A. Takhtadzhyan, “Ob uravnenii Liuvillya, aktsessornykh parametrakh i geometrii prostranstva Teikhmyullera dlya rimanovykh poverkhnostei roda 0”, Matem. sb., 132:2 (1987), 147–166 | MR | Zbl

[2] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980 | MR | Zbl

[3] A. H. M. Levelt, Hypergeometric Functions, Nederl. Akad. Wet., Proc., Ser. A, 64, Amsterdam, 1961 | MR | Zbl

[4] A. A. Bolibrukh, 21-ya problema Gilberta dlya lineinykh fuksovykh sistem, Tr. MIAN, 206, Nauka, M., 1994 | MR | Zbl

[5] A. Its, V. Novokshenov, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Math., 1191, Springer-Verlag, Berlin, 1986 | MR | Zbl

[6] B. Malgrange, “Sur les déformations isomonodromiques. I”, Mathematics and Physics (Paris, 1979/1982), Progr. Math., 37, Birkhäuser, Boston, 1983, 401–426 | MR | Zbl

[7] L. Fuchs, “Zur Theorie der linearen Differentialgleichungen mit veränderlichen Koeffizienten”, J. Reine Angew. Math., 68 (1868), 354–385 | Zbl

[8] A. A. Bolibrukh, “Ob izomonodromnykh sliyaniyakh fuksovykh osobennostei”, Lokalnye i globalnye zadachi teorii osobennostei, Tr. MIAN, 221, 1998, 127–142 | MR | Zbl

[9] A. Bolibruch, “On orders of movable poles of the Schlesinger equation”, J. Dynam. Control Systems, 6:1 (2000), 57–73 | DOI | MR | Zbl

[10] A. A. Bolibrukh, “O $\tau$-funktsii uravneniya izomonodromnykh deformatsii Shlezingera”, Matem. zametki, 74:2 (2003), 184–191 | MR | Zbl