The Mean-Value Theorem for Elliptic Operators on Stratified Sets
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 417-426.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, an analog of the mean-value theorem for harmonic functions is proved for an elliptic operator on the stratified set of “stratified” spheres whose radius is sufficiently small. In contrast to the classical case, the statement of the theorem has the form of a special differential relationship between the mean values over different parts of the sphere. The result is used to prove the strong maximum principle.
Keywords: Green's formula, mean-value theorem, stratified sets, harmonic and subharmonic functions, strong maximum principle.
@article{MZM_2007_81_3_a9,
     author = {S. N. Oshchepkova and O. M. Penkin},
     title = {The {Mean-Value} {Theorem} for {Elliptic} {Operators} on {Stratified} {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {417--426},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a9/}
}
TY  - JOUR
AU  - S. N. Oshchepkova
AU  - O. M. Penkin
TI  - The Mean-Value Theorem for Elliptic Operators on Stratified Sets
JO  - Matematičeskie zametki
PY  - 2007
SP  - 417
EP  - 426
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a9/
LA  - ru
ID  - MZM_2007_81_3_a9
ER  - 
%0 Journal Article
%A S. N. Oshchepkova
%A O. M. Penkin
%T The Mean-Value Theorem for Elliptic Operators on Stratified Sets
%J Matematičeskie zametki
%D 2007
%P 417-426
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a9/
%G ru
%F MZM_2007_81_3_a9
S. N. Oshchepkova; O. M. Penkin. The Mean-Value Theorem for Elliptic Operators on Stratified Sets. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 417-426. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a9/

[1] A. A. Gavrilov, O. M. Penkin, “Analog lemmy o normalnoi proizvodnoi dlya ellipticheskogo uravneniya na stratifitsirovannom mnozhestve”, Differents. uravneniya, 36:2 (2000), 226–232 | MR | Zbl

[2] O. M. Penkin, “O printsipe maksimuma dlya ellipticheskogo uravneniya na dvumernom kletochnom komplekse”, Dokl. RAN, 352:4 (1997), 462–465 | MR | Zbl

[3] O. Penkin, “About a geometrical approach to multistructures and some qualitative properties of solutions”, Partial Differential Equations on Multistructures (Luminy, 1999), Lecture Notes in Pure and Appl. Math., 219, eds. F. Ali Mehmeti, J. von Belov, S. Nicaise, Marcel Dekker, New York, 2001, 183–191 | MR | Zbl

[4] A. A. Gavrilov, S. Nicaise, O. M. Penkin, “Poincaré's inequality on stratified sets and applications”, Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Levico Terme, 2000), Progr. Nonlinear Differential Equations Appl., 55, Birkhäuser, Basel, 2003, 195–213 | MR | Zbl

[5] O. M. Penkin, Yu. V. Pokornyi, “O nesovmestnykh neravenstvakh dlya ellipticheskikh operatorov na stratifitsirovannykh mnozhestvakh”, Differents. uravneniya, 34:8 (1998), 1107–1113 | MR | Zbl

[6] A. T. Fomenko, Differentsialnaya geometriya i topologiya. Dopolnitelnye glavy, Izd-vo MGU, M., 1983 | Zbl

[7] F. Pham, Introduction a l'étude topologique des singularités de Landau, Gauthier-Villars, Paris, 1967 | MR | Zbl

[8] S. Nicaise, O. M. Penkin, “Poincaré–Perron's method for the Dirichlet problem on stratified sets”, J. Math. Anal. Appl., 296:2 (2004), 504–520 | DOI | MR | Zbl