Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_3_a4, author = {E. Kopeck\'a}, title = {Small set in a large box}, journal = {Matemati\v{c}eskie zametki}, pages = {348--360}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/} }
E. Kopecká. Small set in a large box. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 348-360. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/
[1] L. Hetzelt, Über die besste Coapproximation in $\mathbb R^n$, Dissertation, University of Erlangen–Nürnberg, 1981
[2] W. J. , P. Enflo, “Contractive projections on $\ell_p$ spaces”, Analysis at Urbana, vol. I (Urbana, IL, 1986–1987), London Math. Soc. Lecture Note Ser., 137, Cambridge Univ. Press, Cambridge, 1989, 151–161 | MR | Zbl
[3] P. Enflo, “Contractive projections onto subspaces of $L^p$ spaces”, Function spaces (Edwardsville, IL, 1990), Lecture Notes in Pure Appl. Math., 136, 1992, 79–95 | MR | Zbl
[4] C. Berge, Graphs and Hypergraphs, North-Holland Mathematical Library, 6, North-Holland Publ., Amsterdam, 1976 | MR | Zbl
[5] P. Erdős, “Graph theory and probability”, Canad. J. Math., 11 (1959), 34–38 | MR | Zbl
[6] U. Westphal, “Contractive projections on $\ell^1$”, Constructive Approximation, 8:2 (1992), 223–231 | DOI | MR | Zbl
[7] B. Beauzami, “Projections contractantes dans les espaces de Banach”, Bull. Sci. Math. (2), 102:1 (1978), 43–47 | MR | Zbl
[8] L. Ambrozio, A. Kirchheim, “Currents in metric spaces”, Acta Math., 185:1 (2000), 1–80 | DOI | MR | Zbl
[9] S. Wenger, “Isoperimetric inequalities of Euclidean type in metric spaces”, Geom. Funct. Anal., 15:2 (2005), 534–554 | DOI | MR | Zbl
[10] Y. Benjamini, J. Lindenstrauss, Geometric Non-Linear Functional Analysis, vol. 1, Amer. Math. Soc. Colloq. Publ., 48, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl