Small set in a large box
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 348-360
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K\subset\mathbb R^d$ be a compact convex set which is an intersection of half-spaces defined by at most two coordinates. Let $Q$ be the smallest axes-parallel box containing $K$. We show that as the dimension $d$ grows, the ratio $\operatorname{diam}Q/\operatorname{diam}K$ can be arbitrarily large. We also give examples of compact sets in Banach spaces, which are not contained in any compact contractive set.
Keywords:
convex compact subset of $\mathbb R^d$, axes-parallel box, contractive set, graph, random hypergraph.
@article{MZM_2007_81_3_a4,
author = {E. Kopeck\'a},
title = {Small set in a large box},
journal = {Matemati\v{c}eskie zametki},
pages = {348--360},
publisher = {mathdoc},
volume = {81},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/}
}
E. Kopecká. Small set in a large box. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 348-360. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/