Small set in a large box
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 348-360

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K\subset\mathbb R^d$ be a compact convex set which is an intersection of half-spaces defined by at most two coordinates. Let $Q$ be the smallest axes-parallel box containing $K$. We show that as the dimension $d$ grows, the ratio $\operatorname{diam}Q/\operatorname{diam}K$ can be arbitrarily large. We also give examples of compact sets in Banach spaces, which are not contained in any compact contractive set.
Keywords: convex compact subset of $\mathbb R^d$, axes-parallel box, contractive set, graph, random hypergraph.
@article{MZM_2007_81_3_a4,
     author = {E. Kopeck\'a},
     title = {Small set in a large box},
     journal = {Matemati\v{c}eskie zametki},
     pages = {348--360},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/}
}
TY  - JOUR
AU  - E. Kopecká
TI  - Small set in a large box
JO  - Matematičeskie zametki
PY  - 2007
SP  - 348
EP  - 360
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/
LA  - ru
ID  - MZM_2007_81_3_a4
ER  - 
%0 Journal Article
%A E. Kopecká
%T Small set in a large box
%J Matematičeskie zametki
%D 2007
%P 348-360
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/
%G ru
%F MZM_2007_81_3_a4
E. Kopecká. Small set in a large box. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 348-360. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a4/