Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_3_a2, author = {W. V. Zudilin}, title = {Quadratic {Transformations} and {Guillera's} {Formulas} for~$1/\pi^2$}, journal = {Matemati\v{c}eskie zametki}, pages = {335--340}, publisher = {mathdoc}, volume = {81}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a2/} }
W. V. Zudilin. Quadratic Transformations and Guillera's Formulas for~$1/\pi^2$. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 335-340. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a2/
[1] J. Guillera, “Some binomial series obtained by the WZ-method”, Adv. in Appl. Math., 29:4 (2002), 599–603 | DOI | MR | Zbl
[2] J. Guillera, “About a new kind of Ramanujan-type series”, Experiment. Math., 12:4 (2003), 507–510 | MR | Zbl
[3] J. Guillera, “Generators of some Ramanujan formulas”, Ramanujan J., 11:1 (2006), 41–48 | DOI | MR | Zbl
[4] J. Guillera, My formulas for $1/\pi^2$, Manuscript at , 2005 http://personal.auna.com/jguillera/pi-formulas.pdf
[5] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl
[6] Y. Yang, “On differential equations satisfied by modular forms”, Math. Z., 246:1–2 (2004), 1–19 | DOI | MR | Zbl
[7] H. H. Chan, S. H. Chan, Z. Liu, “Domb's numbers and Ramanujan–Sato type series for $1/\pi$”, Adv. Math., 186:2 (2004), 396–410 | DOI | MR | Zbl
[8] Y. Yang, Personal communication, August 2005
[9] G. Almkvist, W. Zudilin, “Differential equations, mirror maps and zeta values”, Mirror Symmetry V, AMS/IP Stud. Adv. Math., 38, eds. N. Yui, S.-T. Yau, and J. D. Lewis, Amer. Math. Soc. International Press, Providence, RI, 2007, 481–515 ; arXiv: math.NT/0402386 | MR
[10] W. Zudilin, “Well-poised hypergeometric transformations of Euler-type multiple integrals”, J. London Math. Soc. (2), 70:1 (2004), 215–230 | DOI | MR | Zbl
[11] M. Petkovšek, H. S. Wilf, D. Zeilberger, $A=B$, A. K. Peters, Ltd., Wellesley, MA, 1996 | MR | Zbl