Quadratic Transformations and Guillera's Formulas for~$1/\pi^2$
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 335-340.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove two new series of Ramanujan type for $1/\pi^2$.
Keywords: Ramanujan-type formula, hypergeometric series, Apéry numbers.
Mots-clés : Pochhammer symbol
@article{MZM_2007_81_3_a2,
     author = {W. V. Zudilin},
     title = {Quadratic {Transformations} and {Guillera's} {Formulas} for~$1/\pi^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {335--340},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a2/}
}
TY  - JOUR
AU  - W. V. Zudilin
TI  - Quadratic Transformations and Guillera's Formulas for~$1/\pi^2$
JO  - Matematičeskie zametki
PY  - 2007
SP  - 335
EP  - 340
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a2/
LA  - ru
ID  - MZM_2007_81_3_a2
ER  - 
%0 Journal Article
%A W. V. Zudilin
%T Quadratic Transformations and Guillera's Formulas for~$1/\pi^2$
%J Matematičeskie zametki
%D 2007
%P 335-340
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a2/
%G ru
%F MZM_2007_81_3_a2
W. V. Zudilin. Quadratic Transformations and Guillera's Formulas for~$1/\pi^2$. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 335-340. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a2/

[1] J. Guillera, “Some binomial series obtained by the WZ-method”, Adv. in Appl. Math., 29:4 (2002), 599–603 | DOI | MR | Zbl

[2] J. Guillera, “About a new kind of Ramanujan-type series”, Experiment. Math., 12:4 (2003), 507–510 | MR | Zbl

[3] J. Guillera, “Generators of some Ramanujan formulas”, Ramanujan J., 11:1 (2006), 41–48 | DOI | MR | Zbl

[4] J. Guillera, My formulas for $1/\pi^2$, Manuscript at , 2005 http://personal.auna.com/jguillera/pi-formulas.pdf

[5] L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl

[6] Y. Yang, “On differential equations satisfied by modular forms”, Math. Z., 246:1–2 (2004), 1–19 | DOI | MR | Zbl

[7] H. H. Chan, S. H. Chan, Z. Liu, “Domb's numbers and Ramanujan–Sato type series for $1/\pi$”, Adv. Math., 186:2 (2004), 396–410 | DOI | MR | Zbl

[8] Y. Yang, Personal communication, August 2005

[9] G. Almkvist, W. Zudilin, “Differential equations, mirror maps and zeta values”, Mirror Symmetry V, AMS/IP Stud. Adv. Math., 38, eds. N. Yui, S.-T. Yau, and J. D. Lewis, Amer. Math. Soc. International Press, Providence, RI, 2007, 481–515 ; arXiv: math.NT/0402386 | MR

[10] W. Zudilin, “Well-poised hypergeometric transformations of Euler-type multiple integrals”, J. London Math. Soc. (2), 70:1 (2004), 215–230 | DOI | MR | Zbl

[11] M. Petkovšek, H. S. Wilf, D. Zeilberger, $A=B$, A. K. Peters, Ltd., Wellesley, MA, 1996 | MR | Zbl