Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 328-334
Voir la notice de l'article provenant de la source Math-Net.Ru
We present sufficient conditions for the existence of an eigenvalue of the Laplace operator with zero Dirichlet conditions in a weakly perturbed infinite cylinder in the case of localized perturbations which are extensions along the transverse coordinates with coefficients depending on the longitudinal coordinate. If such an eigenvalue exists, then, for this eigenvalue, we obtain an asymptotic formula with respect to a small parameter characterizing the values of extensions.
Keywords:
Laplace operator, eigenvalue, asymptotics, small parameter, infinite cylinder, localized perturbations.
@article{MZM_2007_81_3_a1,
author = {V. V. Grushin},
title = {Asymptotic {Behavior} of {Eigenvalues} of the {Laplace} {Operator} in {Infinite} {Cylinders} {Perturbed} by {Transverse} {Extensions}},
journal = {Matemati\v{c}eskie zametki},
pages = {328--334},
publisher = {mathdoc},
volume = {81},
number = {3},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/}
}
TY - JOUR AU - V. V. Grushin TI - Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions JO - Matematičeskie zametki PY - 2007 SP - 328 EP - 334 VL - 81 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/ LA - ru ID - MZM_2007_81_3_a1 ER -
%0 Journal Article %A V. V. Grushin %T Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions %J Matematičeskie zametki %D 2007 %P 328-334 %V 81 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/ %G ru %F MZM_2007_81_3_a1
V. V. Grushin. Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 328-334. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/