Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions
Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 328-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present sufficient conditions for the existence of an eigenvalue of the Laplace operator with zero Dirichlet conditions in a weakly perturbed infinite cylinder in the case of localized perturbations which are extensions along the transverse coordinates with coefficients depending on the longitudinal coordinate. If such an eigenvalue exists, then, for this eigenvalue, we obtain an asymptotic formula with respect to a small parameter characterizing the values of extensions.
Keywords: Laplace operator, eigenvalue, asymptotics, small parameter, infinite cylinder, localized perturbations.
@article{MZM_2007_81_3_a1,
     author = {V. V. Grushin},
     title = {Asymptotic {Behavior} of {Eigenvalues} of the {Laplace} {Operator} in {Infinite} {Cylinders} {Perturbed} by {Transverse} {Extensions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {328--334},
     publisher = {mathdoc},
     volume = {81},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/}
}
TY  - JOUR
AU  - V. V. Grushin
TI  - Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions
JO  - Matematičeskie zametki
PY  - 2007
SP  - 328
EP  - 334
VL  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/
LA  - ru
ID  - MZM_2007_81_3_a1
ER  - 
%0 Journal Article
%A V. V. Grushin
%T Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions
%J Matematičeskie zametki
%D 2007
%P 328-334
%V 81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/
%G ru
%F MZM_2007_81_3_a1
V. V. Grushin. Asymptotic Behavior of Eigenvalues of the Laplace Operator in Infinite Cylinders Perturbed by Transverse Extensions. Matematičeskie zametki, Tome 81 (2007) no. 3, pp. 328-334. http://geodesic.mathdoc.fr/item/MZM_2007_81_3_a1/

[1] V. P. Maslov, “Asimptotika sobstvennykh funktsii uravneniya $\Delta u+k^2u=0$ s kraevymi usloviyami na ekvidistantnykh krivykh i rasseyanie elektromagnitnykh voln v volnovode”, Dokl. AN SSSR, 123:4 (1958), 631–633 | MR | Zbl

[2] V. P. Maslov, “Mathematical aspects of integral optics”, Russ. J. Math. Phys., 8:1 (2001), 83–105 | MR | Zbl

[3] V. P. Maslov, E. M. Vorobev, “Ob odnomodovykh otkrytykh rezonatorakh”, Dokl. AN SSSR, 179:3 (1968), 558–561

[4] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn,, “Asimptoticheskie resheniya uravneniya Shrëdingera v tonkikh trubkakh”, Tr. IMM UrO RAN, 9:1 (2003), 1–11 | MR

[5] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, T. Ya. Tudorovskii, “Kvaziklassicheskoe priblizhenie i kanonicheskii operator Maslova dlya nerelyativistskikh uravnenii kvantovoi mekhaniki v nanotrubkakh”, Dokl. RAN, 393:4 (2003), 460–464 | MR

[6] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Quantum and classical dynamics of electron in thin curved tubes with spin and external electromagnetic fields taken into account”, Russ. J. Math. Phys., 11:1 (2004), 109–119 | MR | Zbl

[7] V. V. Belov, S. Yu. Dobrokhotov, T. Ya. Tudorovskii, “Asimptoticheskie resheniya nerelyativistskikh uravnenii kvantovoi mekhaniki v iskrivlennykh nanotrubkakh. I. Reduktsiya k prostranstvenno-odnomernym uravneniyam”, TMF, 141:2 (2004), 267–303 | MR

[8] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanotrubkakh”, UFN, 175:9 (2005), 1004–1010 | DOI

[9] P. Duclos, P. Exner, “Curvature-induced bound states in quantum waveguides in two and three dimensions”, Rev. Math. Phys., 7:1 (1995), 73–102 | DOI | MR | Zbl

[10] P. Exner, P. Šeba, “Bound states in curved quantum waveguides”, J. Math. Phys., 30:11 (1989), 2574–2580 | DOI | MR | Zbl

[11] P. Exner, “Bound states in quantum waveguides of a slowly decaying curvature”, J. Math. Phys., 34:1 (1993), 23–28 | DOI | MR | Zbl

[12] P. Exner, “A quantum pipette”, J. Math. A, 28 (1995), 5323–5330 | MR | Zbl

[13] W. Bulla, F. Gesztesy, W. Renger, B. Simon, “Weakly couped bound states in quantum waveguides”, Proc Amer. Math. Soc., 125:5 (1997), 1487–1495 | DOI | MR | Zbl

[14] P. Exner, S. A. Vugalter, “Bounds states in a locally deformed waveguide: the critical value”, Lett. Math. Phys., 39:1 (1997), 59–68 | DOI | MR | Zbl

[15] D. Borisov, P. Exner, R. Gadyl'shin, D. Krejcirik, “Bound states in a weakly deformed strips and layers”, Ann. Henri Poincaré, 2:3 (2001), 553–572 | DOI | MR | Zbl

[16] V. V. Grushin, “O sobstvennykh znacheniyakh finitno voemuschennogo operatora Laplasa v beskonechnykh tsilindricheskikh oblastyakh”, Matem. zametki, 75:3 (2004), 360–371 | MR | Zbl

[17] V. V. Grushin, “Asimptoticheskoe povedenie sobstvennykh znachenii operatora Shrëdingera s poperechnym potentsialom v slabo iskrivlennykh beskonechnykh tsilindrakh”, Matem. zametki, 77:5 (2005), 656–664 | MR | Zbl

[18] R. R. Gadylshin, “O lokalnykh vozmuscheniyakh kvantovykh volnovodov”, TMF, 145:3 (2005), 358–371 | MR

[19] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 4: Analiz operatorov, Mir, M., 1982 | MR | Zbl