Permutations of Tori in Integrable Hamiltonian Systems and Spectral Series of Pseudodifferential Operators
Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 174-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study integrable Hamiltonian systems with two degrees of freedom, whose regular level sets consist of several Liouville tori, and the bifurcation diagram has an isolated point. We study assumptions under which going around the singular point causes a permutation of the tori. We also consider a quantum analog of this situation and give model examples.
Keywords: integrable Hamiltonian system, bifurcation diagram, level set, symplectic manifold
Mots-clés : Liouville torus, quantization condition.
@article{MZM_2007_81_2_a1,
     author = {R. I. Aksitov},
     title = {Permutations of {Tori} in {Integrable} {Hamiltonian} {Systems} and {Spectral} {Series} of {Pseudodifferential} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {174--183},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/}
}
TY  - JOUR
AU  - R. I. Aksitov
TI  - Permutations of Tori in Integrable Hamiltonian Systems and Spectral Series of Pseudodifferential Operators
JO  - Matematičeskie zametki
PY  - 2007
SP  - 174
EP  - 183
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/
LA  - ru
ID  - MZM_2007_81_2_a1
ER  - 
%0 Journal Article
%A R. I. Aksitov
%T Permutations of Tori in Integrable Hamiltonian Systems and Spectral Series of Pseudodifferential Operators
%J Matematičeskie zametki
%D 2007
%P 174-183
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/
%G ru
%F MZM_2007_81_2_a1
R. I. Aksitov. Permutations of Tori in Integrable Hamiltonian Systems and Spectral Series of Pseudodifferential Operators. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 174-183. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/

[1] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, t. I, Udmurtskii universitet, Izhevsk, 1999 | MR | Zbl

[2] J. J. Duistermaat, “On global action-angle variables”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl

[3] Zung Nguyen Tien, “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl

[4] San Vu Ngoc, “Quantum monodromy in integrable systems”, Comm. Math. Phys., 203:2 (1999), 465–479 | DOI | MR | Zbl

[5] Zung Nguyen Tien, “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl

[6] A. Strominger, S.-T. Yau, E. Zaslow, “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479:1–2 (1996), 243–259 | DOI | MR | Zbl

[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl