Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_2_a1, author = {R. I. Aksitov}, title = {Permutations of {Tori} in {Integrable} {Hamiltonian} {Systems} and {Spectral} {Series} of {Pseudodifferential} {Operators}}, journal = {Matemati\v{c}eskie zametki}, pages = {174--183}, publisher = {mathdoc}, volume = {81}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/} }
TY - JOUR AU - R. I. Aksitov TI - Permutations of Tori in Integrable Hamiltonian Systems and Spectral Series of Pseudodifferential Operators JO - Matematičeskie zametki PY - 2007 SP - 174 EP - 183 VL - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/ LA - ru ID - MZM_2007_81_2_a1 ER -
R. I. Aksitov. Permutations of Tori in Integrable Hamiltonian Systems and Spectral Series of Pseudodifferential Operators. Matematičeskie zametki, Tome 81 (2007) no. 2, pp. 174-183. http://geodesic.mathdoc.fr/item/MZM_2007_81_2_a1/
[1] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, t. I, Udmurtskii universitet, Izhevsk, 1999 | MR | Zbl
[2] J. J. Duistermaat, “On global action-angle variables”, Comm. Pure Appl. Math., 33 (1980), 687–706 | DOI | MR | Zbl
[3] Zung Nguyen Tien, “A note on focus-focus singularities”, Differential Geom. Appl., 7:2 (1997), 123–130 | DOI | MR | Zbl
[4] San Vu Ngoc, “Quantum monodromy in integrable systems”, Comm. Math. Phys., 203:2 (1999), 465–479 | DOI | MR | Zbl
[5] Zung Nguyen Tien, “Another note on focus-focus singularities”, Lett. Math. Phys., 60:1 (2002), 87–99 | DOI | MR | Zbl
[6] A. Strominger, S.-T. Yau, E. Zaslow, “Mirror symmetry is $T$-duality”, Nuclear Phys. B, 479:1–2 (1996), 243–259 | DOI | MR | Zbl
[7] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl