Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_1_a8, author = {A. N. Skorobogatov}, title = {On the {Elementary} {Obstruction} to the {Existence} of {Rational} {Points}}, journal = {Matemati\v{c}eskie zametki}, pages = {112--124}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/} }
A. N. Skorobogatov. On the Elementary Obstruction to the Existence of Rational Points. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/
[1] A. Grothendieck, “Le groupe de Brauer. I, II, III”, Dix exposés sur la cohomologie des schémas, eds. A. Grothendieck, N. H. Kuipers, North-Holland Masson, Amsterdam–Paris, 1968, 46–66, 67–87, 88–188 | MR | Zbl
[2] J-L. Colliot-Thélène, J.-J. Sansuc, “La descente sur les variétés rationnelles. II”, Duke Math. J., 54:2 (1987), 375–492 | DOI | MR | Zbl
[3] A. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Math., 144, Cambridge University Press, Cambridge, 2001 | MR | Zbl
[4] M. Borovoi, J.-L. Colliot-Thélène, A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Preprint, 2006 | MR | Zbl
[5] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl
[6] A. N. Skorobogatov, “Beyond the Manin obstruction”, Invent. Math., 135:2 (1999), 399–424 | DOI | MR | Zbl
[7] J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math., 1, Academic Press, Boston, MA, 1986 | MR | Zbl
[8] F. Oort, Commutative Group Schemes, Lecture Notes in Math., 15, Springer-Verlag, Berlin–New York, 1966 | MR | Zbl
[9] J. S. Milne, “The homological dimension of commutative group schemes over a perfect field”, J. Algebra, 16 (1970), 436–441 | DOI | MR | Zbl
[10] Zh. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | Zbl
[11] A. Weil, “On algebraic groups and homogeneous spaces”, Amer. J. Math., 77 (1955), 493–512 | DOI | MR | Zbl
[12] J. van Hamel, “Lichtenbaum–Tate duality for varieties over $p$-adic fields”, J. Reine Angew. Math., 575 (2004), 101–134 | MR | Zbl
[13] Zh.-P. Serr, Kogomologii Galua, Mir, M., 1968 | MR | Zbl
[14] B. Iversen, “Brauer group of a linear algebraic group”, J. Algebra, 42:2 (1976), 295–301 | DOI | MR | Zbl
[15] J. Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl
[16] T. Springer, “Nonabelian $H^2$ in Galois cohomology”, Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., 9, eds. A. Borel, G. D. Mostow, Amer. Math. Soc., Providence, RI, 1966, 164–182 | MR
[17] M. V. Borovoi, “Abelianization of the second nonabelian Galois cohomology”, Duke Math. J., 72:1 (1993), 217–239 | DOI | MR | Zbl
[18] J.-L. Colliot-Thélène, B. È. Kunyavskiĭ, “Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes”, J. Algebraic Geom., 15:4 (2006), 733–752 | MR | Zbl
[19] M. Borovoi, “A cohomological obstruction to the Hasse principle for homogeneous spaces”, Math. Ann., 314:3 (1999), 491–504 | DOI | MR | Zbl
[20] F. A. Bogomolov, “Gruppa Brauera polei invariantov algebraicheskikh grupp”, Matem. sb., 180:2 (1989), 279–293 | MR | Zbl