On the Elementary Obstruction to the Existence of Rational Points
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 112-124.

Voir la notice de l'article provenant de la source Math-Net.Ru

The differentials of a certain spectral sequence converging to the Brauer–Grothendieck group of an algebraic variety $X$ over an arbitrary field are interpreted as the $\cup$-product with the class of the so-called “elementary obstruction.” This class is closely related to the cohomology class of the first-degree Albanese variety of $X$. If $X$ is a homogeneous space of an algebraic group, then the elementary obstruction can be described explicitly in terms of natural cohomological invariants of $X$. This reduces the calculation of the Brauer–Grothendieck group to the computation of a certain pairing in the Galois cohomology.
Keywords: Brauer–Grothendieck group, algebraic variety over a field, elementary obstruction to the existence of rational points, Albanese variety, Picard variety, Galois cohomology.
@article{MZM_2007_81_1_a8,
     author = {A. N. Skorobogatov},
     title = {On the {Elementary} {Obstruction} to the {Existence} of {Rational} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/}
}
TY  - JOUR
AU  - A. N. Skorobogatov
TI  - On the Elementary Obstruction to the Existence of Rational Points
JO  - Matematičeskie zametki
PY  - 2007
SP  - 112
EP  - 124
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/
LA  - ru
ID  - MZM_2007_81_1_a8
ER  - 
%0 Journal Article
%A A. N. Skorobogatov
%T On the Elementary Obstruction to the Existence of Rational Points
%J Matematičeskie zametki
%D 2007
%P 112-124
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/
%G ru
%F MZM_2007_81_1_a8
A. N. Skorobogatov. On the Elementary Obstruction to the Existence of Rational Points. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/

[1] A. Grothendieck, “Le groupe de Brauer. I, II, III”, Dix exposés sur la cohomologie des schémas, eds. A. Grothendieck, N. H. Kuipers, North-Holland Masson, Amsterdam–Paris, 1968, 46–66, 67–87, 88–188 | MR | Zbl

[2] J-L. Colliot-Thélène, J.-J. Sansuc, “La descente sur les variétés rationnelles. II”, Duke Math. J., 54:2 (1987), 375–492 | DOI | MR | Zbl

[3] A. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Math., 144, Cambridge University Press, Cambridge, 2001 | MR | Zbl

[4] M. Borovoi, J.-L. Colliot-Thélène, A. N. Skorobogatov, The elementary obstruction and homogeneous spaces, Preprint, 2006 | MR | Zbl

[5] A. A. Beilinson, J. Bernstein, P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl

[6] A. N. Skorobogatov, “Beyond the Manin obstruction”, Invent. Math., 135:2 (1999), 399–424 | DOI | MR | Zbl

[7] J. S. Milne, Arithmetic Duality Theorems, Perspectives in Math., 1, Academic Press, Boston, MA, 1986 | MR | Zbl

[8] F. Oort, Commutative Group Schemes, Lecture Notes in Math., 15, Springer-Verlag, Berlin–New York, 1966 | MR | Zbl

[9] J. S. Milne, “The homological dimension of commutative group schemes over a perfect field”, J. Algebra, 16 (1970), 436–441 | DOI | MR | Zbl

[10] Zh. Serr, Algebraicheskie gruppy i polya klassov, Mir, M., 1968 | Zbl

[11] A. Weil, “On algebraic groups and homogeneous spaces”, Amer. J. Math., 77 (1955), 493–512 | DOI | MR | Zbl

[12] J. van Hamel, “Lichtenbaum–Tate duality for varieties over $p$-adic fields”, J. Reine Angew. Math., 575 (2004), 101–134 | MR | Zbl

[13] Zh.-P. Serr, Kogomologii Galua, Mir, M., 1968 | MR | Zbl

[14] B. Iversen, “Brauer group of a linear algebraic group”, J. Algebra, 42:2 (1976), 295–301 | DOI | MR | Zbl

[15] J. Giraud, Cohomologie non abélienne, Springer-Verlag, Berlin–New York, 1971 | MR | Zbl

[16] T. Springer, “Nonabelian $H^2$ in Galois cohomology”, Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., 9, eds. A. Borel, G. D. Mostow, Amer. Math. Soc., Providence, RI, 1966, 164–182 | MR

[17] M. V. Borovoi, “Abelianization of the second nonabelian Galois cohomology”, Duke Math. J., 72:1 (1993), 217–239 | DOI | MR | Zbl

[18] J.-L. Colliot-Thélène, B. È. Kunyavskiĭ, “Groupe de Picard et groupe de Brauer des compactifications lisses d'espaces homogènes”, J. Algebraic Geom., 15:4 (2006), 733–752 | MR | Zbl

[19] M. Borovoi, “A cohomological obstruction to the Hasse principle for homogeneous spaces”, Math. Ann., 314:3 (1999), 491–504 | DOI | MR | Zbl

[20] F. A. Bogomolov, “Gruppa Brauera polei invariantov algebraicheskikh grupp”, Matem. sb., 180:2 (1989), 279–293 | MR | Zbl