On the Elementary Obstruction to the Existence of Rational Points
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 112-124

Voir la notice de l'article provenant de la source Math-Net.Ru

The differentials of a certain spectral sequence converging to the Brauer–Grothendieck group of an algebraic variety $X$ over an arbitrary field are interpreted as the $\cup$-product with the class of the so-called “elementary obstruction.” This class is closely related to the cohomology class of the first-degree Albanese variety of $X$. If $X$ is a homogeneous space of an algebraic group, then the elementary obstruction can be described explicitly in terms of natural cohomological invariants of $X$. This reduces the calculation of the Brauer–Grothendieck group to the computation of a certain pairing in the Galois cohomology.
Keywords: Brauer–Grothendieck group, algebraic variety over a field, elementary obstruction to the existence of rational points, Albanese variety, Picard variety, Galois cohomology.
@article{MZM_2007_81_1_a8,
     author = {A. N. Skorobogatov},
     title = {On the {Elementary} {Obstruction} to the {Existence} of {Rational} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {112--124},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/}
}
TY  - JOUR
AU  - A. N. Skorobogatov
TI  - On the Elementary Obstruction to the Existence of Rational Points
JO  - Matematičeskie zametki
PY  - 2007
SP  - 112
EP  - 124
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/
LA  - ru
ID  - MZM_2007_81_1_a8
ER  - 
%0 Journal Article
%A A. N. Skorobogatov
%T On the Elementary Obstruction to the Existence of Rational Points
%J Matematičeskie zametki
%D 2007
%P 112-124
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/
%G ru
%F MZM_2007_81_1_a8
A. N. Skorobogatov. On the Elementary Obstruction to the Existence of Rational Points. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a8/