General Maximal Inequalities Related to the Strong Law of Large Numbers
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 98-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence $(\xi_n)$ of random variables, we obtain maximal inequalities from which we can derive conditions for the a.s. convergence to zero of normalized differences $$ \frac{1}{2^n} \biggl(\max_{2^n\le k2^{n+1}} \biggl|\sum^k_{i=2^n}\xi_i\biggr|-\biggl|\sum_{i=2^n}^{2^{n+1}-1}\xi_i\biggr|\biggr). $$ The convergence to zero of this sequence leads to the strong law of large numbers (SLLN). In the special case of quasistationary sequences, we obtain a sufficient condition for the SLLN, which is an improvement on the well-known Móricz conditions.
Keywords: strong law of large numbers, maximal inequality, quasistationary random sequence, Banach space, Bochner measurability, Jensen's inequality.
@article{MZM_2007_81_1_a7,
     author = {Sh. Levental and H. Salehi and S. A. Chobanyan},
     title = {General {Maximal} {Inequalities} {Related} to the {Strong} {Law} of {Large} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/}
}
TY  - JOUR
AU  - Sh. Levental
AU  - H. Salehi
AU  - S. A. Chobanyan
TI  - General Maximal Inequalities Related to the Strong Law of Large Numbers
JO  - Matematičeskie zametki
PY  - 2007
SP  - 98
EP  - 111
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/
LA  - ru
ID  - MZM_2007_81_1_a7
ER  - 
%0 Journal Article
%A Sh. Levental
%A H. Salehi
%A S. A. Chobanyan
%T General Maximal Inequalities Related to the Strong Law of Large Numbers
%J Matematičeskie zametki
%D 2007
%P 98-111
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/
%G ru
%F MZM_2007_81_1_a7
Sh. Levental; H. Salehi; S. A. Chobanyan. General Maximal Inequalities Related to the Strong Law of Large Numbers. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/

[1] S. A. Chobanyan, S. Levental, V. Mandrekar, “Prokhorov blocks and strong law of large numbers under rearrangements”, J. Theoret. Probab., 17:3 (2004), 647–672 | DOI | MR | Zbl

[2] V. F. Gaposhkin, “Kriterii dlya usilennogo zakona bolshikh chisel dlya nekotorykh statsionarnykh protsessov vtorogo poryadka i odnorodnykh sluchainykh polei”, Teoriya veroyatn. i ee primeneniya, 22:2 (1977), 295–319 | MR | Zbl

[3] V. F. Gaposhkin, “Teorema o skhodimosti pochti vsyudu posledovatelnosti izmerimykh funktsii i ee primeneniya k posledovatelnosti stokhasticheskikh integralov”, Matem. sb., 104 (146):1 (1977), 3–21 | MR | Zbl

[4] J. Rousseau-Egele, “La loi forte des grands nombres pour les processus harmonisables”, Ann. Inst. H. Poincaré Sect. B (N.S.), 15:2 (1979), 175–186 | MR | Zbl

[5] C. Houdré, “On the spectral SLLN and pointwise ergodic theorem in $L^\alpha$”, Ann. Probab., 20:4 (1992), 1731–1753 | DOI | MR | Zbl

[6] F. Móricz, “The strong law of large numbers for quasi-stationary sequences”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 38:3 (1977), 223–236 | DOI | MR | Zbl

[7] F. Móricz, “Moment inequalities and the strong laws of large numbers”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35:4 (1976), 299–314 | DOI | MR | Zbl

[8] M. Longnecker, R. J. Serfling, “General moment and probability inequalities for the maximum partial sum”, Acta Math. Acad. Sci. Hungar., 30:1–2 (1977), 129–133 | DOI | MR | Zbl

[9] R. J. Serfling, “On the strong law of large numbers and related results for quasistationary sequences”, Teoriya veroyatn. i ee prim., 25:1 (1980), 190–194 | MR | Zbl

[10] D. Dehay, “Strong law of large numbers for weakly harmonizable processes”, Stochastic Process. Appl., 24:2 (1987), 259–267 | DOI | MR | Zbl

[11] A. G. Miamee, H. Salehi, “Harmonizability, $V$-boundedness and stationarity dilation of stochastic processes”, Indiana Univ. Math. J., 27:1 (1978), 37–50 | DOI | MR | Zbl

[12] I. S. Gál, J. F. Koksma, “Sur l'ordre de grandeur des fonctions sommables”, Indagationes Math., 12 (1950), 192–207 | MR | Zbl

[13] P. Erdős, “On the strong law of large numbers”, Trans. Amer. Math. Soc., 67:1 (1949), 51–56 | DOI | MR | Zbl

[14] S. Chobanyan, S. Levental, H. Salehi, “Strong law of large numbers under a general moment condition”, Electron. Comm. Probab., 10 (2005), 218–222 | MR | Zbl