General Maximal Inequalities Related to the Strong Law of Large Numbers
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 98-111

Voir la notice de l'article provenant de la source Math-Net.Ru

For a sequence $(\xi_n)$ of random variables, we obtain maximal inequalities from which we can derive conditions for the a.s. convergence to zero of normalized differences $$ \frac{1}{2^n} \biggl(\max_{2^n\le k2^{n+1}} \biggl|\sum^k_{i=2^n}\xi_i\biggr|-\biggl|\sum_{i=2^n}^{2^{n+1}-1}\xi_i\biggr|\biggr). $$ The convergence to zero of this sequence leads to the strong law of large numbers (SLLN). In the special case of quasistationary sequences, we obtain a sufficient condition for the SLLN, which is an improvement on the well-known Móricz conditions.
Keywords: strong law of large numbers, maximal inequality, quasistationary random sequence, Banach space, Bochner measurability, Jensen's inequality.
@article{MZM_2007_81_1_a7,
     author = {Sh. Levental and H. Salehi and S. A. Chobanyan},
     title = {General {Maximal} {Inequalities} {Related} to the {Strong} {Law} of {Large} {Numbers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {98--111},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/}
}
TY  - JOUR
AU  - Sh. Levental
AU  - H. Salehi
AU  - S. A. Chobanyan
TI  - General Maximal Inequalities Related to the Strong Law of Large Numbers
JO  - Matematičeskie zametki
PY  - 2007
SP  - 98
EP  - 111
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/
LA  - ru
ID  - MZM_2007_81_1_a7
ER  - 
%0 Journal Article
%A Sh. Levental
%A H. Salehi
%A S. A. Chobanyan
%T General Maximal Inequalities Related to the Strong Law of Large Numbers
%J Matematičeskie zametki
%D 2007
%P 98-111
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/
%G ru
%F MZM_2007_81_1_a7
Sh. Levental; H. Salehi; S. A. Chobanyan. General Maximal Inequalities Related to the Strong Law of Large Numbers. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/