Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2007_81_1_a7, author = {Sh. Levental and H. Salehi and S. A. Chobanyan}, title = {General {Maximal} {Inequalities} {Related} to the {Strong} {Law} of {Large} {Numbers}}, journal = {Matemati\v{c}eskie zametki}, pages = {98--111}, publisher = {mathdoc}, volume = {81}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/} }
TY - JOUR AU - Sh. Levental AU - H. Salehi AU - S. A. Chobanyan TI - General Maximal Inequalities Related to the Strong Law of Large Numbers JO - Matematičeskie zametki PY - 2007 SP - 98 EP - 111 VL - 81 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/ LA - ru ID - MZM_2007_81_1_a7 ER -
Sh. Levental; H. Salehi; S. A. Chobanyan. General Maximal Inequalities Related to the Strong Law of Large Numbers. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 98-111. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a7/
[1] S. A. Chobanyan, S. Levental, V. Mandrekar, “Prokhorov blocks and strong law of large numbers under rearrangements”, J. Theoret. Probab., 17:3 (2004), 647–672 | DOI | MR | Zbl
[2] V. F. Gaposhkin, “Kriterii dlya usilennogo zakona bolshikh chisel dlya nekotorykh statsionarnykh protsessov vtorogo poryadka i odnorodnykh sluchainykh polei”, Teoriya veroyatn. i ee primeneniya, 22:2 (1977), 295–319 | MR | Zbl
[3] V. F. Gaposhkin, “Teorema o skhodimosti pochti vsyudu posledovatelnosti izmerimykh funktsii i ee primeneniya k posledovatelnosti stokhasticheskikh integralov”, Matem. sb., 104 (146):1 (1977), 3–21 | MR | Zbl
[4] J. Rousseau-Egele, “La loi forte des grands nombres pour les processus harmonisables”, Ann. Inst. H. Poincaré Sect. B (N.S.), 15:2 (1979), 175–186 | MR | Zbl
[5] C. Houdré, “On the spectral SLLN and pointwise ergodic theorem in $L^\alpha$”, Ann. Probab., 20:4 (1992), 1731–1753 | DOI | MR | Zbl
[6] F. Móricz, “The strong law of large numbers for quasi-stationary sequences”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 38:3 (1977), 223–236 | DOI | MR | Zbl
[7] F. Móricz, “Moment inequalities and the strong laws of large numbers”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 35:4 (1976), 299–314 | DOI | MR | Zbl
[8] M. Longnecker, R. J. Serfling, “General moment and probability inequalities for the maximum partial sum”, Acta Math. Acad. Sci. Hungar., 30:1–2 (1977), 129–133 | DOI | MR | Zbl
[9] R. J. Serfling, “On the strong law of large numbers and related results for quasistationary sequences”, Teoriya veroyatn. i ee prim., 25:1 (1980), 190–194 | MR | Zbl
[10] D. Dehay, “Strong law of large numbers for weakly harmonizable processes”, Stochastic Process. Appl., 24:2 (1987), 259–267 | DOI | MR | Zbl
[11] A. G. Miamee, H. Salehi, “Harmonizability, $V$-boundedness and stationarity dilation of stochastic processes”, Indiana Univ. Math. J., 27:1 (1978), 37–50 | DOI | MR | Zbl
[12] I. S. Gál, J. F. Koksma, “Sur l'ordre de grandeur des fonctions sommables”, Indagationes Math., 12 (1950), 192–207 | MR | Zbl
[13] P. Erdős, “On the strong law of large numbers”, Trans. Amer. Math. Soc., 67:1 (1949), 51–56 | DOI | MR | Zbl
[14] S. Chobanyan, S. Levental, H. Salehi, “Strong law of large numbers under a general moment condition”, Electron. Comm. Probab., 10 (2005), 218–222 | MR | Zbl