Two-Component Generalizations of the Camassa--Holm Equation
Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 149-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : Camassa–Holm equation, coadjoint orbit, Lie–Poisson structure.
Keywords: bi-Hamiltonian system, group of diffeomorphisms of the circle, Virasoro cocycle
@article{MZM_2007_81_1_a13,
     author = {P. A. Kuzmin},
     title = {Two-Component {Generalizations} of the {Camassa--Holm} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {149--152},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a13/}
}
TY  - JOUR
AU  - P. A. Kuzmin
TI  - Two-Component Generalizations of the Camassa--Holm Equation
JO  - Matematičeskie zametki
PY  - 2007
SP  - 149
EP  - 152
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a13/
LA  - ru
ID  - MZM_2007_81_1_a13
ER  - 
%0 Journal Article
%A P. A. Kuzmin
%T Two-Component Generalizations of the Camassa--Holm Equation
%J Matematičeskie zametki
%D 2007
%P 149-152
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a13/
%G ru
%F MZM_2007_81_1_a13
P. A. Kuzmin. Two-Component Generalizations of the Camassa--Holm Equation. Matematičeskie zametki, Tome 81 (2007) no. 1, pp. 149-152. http://geodesic.mathdoc.fr/item/MZM_2007_81_1_a13/

[1] R. Camassa, D. Holm, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR | Zbl

[2] R. Camassa, D. Holm, J. M. Hyman, Adv. Appl. Mech., 31 (1994), 1–33 | DOI | Zbl

[3] B. Fuchssteiner, A. S. Fokas, Phys. D, 4:1 (1981), 47–66 | DOI | MR

[4] G. Falqui, J. Phys. A, Math. Gen., 39 (2006), 327–342 | DOI | MR | Zbl

[5] Ming Chen, Si-Qi Liu, Youjin Zhang, Lett. Math. Phys., 75:1 (2006), 1–15 | DOI | MR | Zbl

[6] S.-Q. Liu, Y. Zhang, J. Geom. Phys., 54:4 (2005), 427–453 | DOI | MR | Zbl

[7] P. J. Olver, P. Rozenau, Phys. Rev. E, 53:2 (1996), 1900–1906 | DOI | MR

[8] H. Aratyn, J. F. Gomes, A. H. Zimerman, J. Phys. A, Math. Gen., 39:5 (2006), 1099–1114 | DOI | MR | Zbl

[9] A. A. Kirillov, The Geometry of Moments. Twistor Geometry and Nonlinear Systems (Primorsko, 1980), Lecture Notes in Math., 970, Springer-Verlag, Berlin, 1982, 101–123 | MR | Zbl

[10] P. Marcel, V. Ovsienko, C. Roger, Lett. Math. Phys., 40:1 (1997), 31–39 | DOI | MR | Zbl

[11] V. Yu. Ovsienko, K. Rozhe, Funkts. analiz i prilozh., 30:4 (1996), 86–88 | MR | Zbl

[12] E. Arbarello, C. De Concini, V. G. Kac, C. Procesi, Comm. Math. Phys., 117:1 (1988), 1–36 | DOI | MR | Zbl