Properties of large prime divisors of numbers of the form $p-1$
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 920-925.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of this paper is the fact that the fraction of primes $p\le x$ satisfying the condition that $p-1$ has a prime divisor $q>\exp(\ln x/\ln\ln x)$ and the number of prime divisors of $q-1$ essentially differ from $\ln\ln(x/n)$, where $n=(p-1)/q$, tends to zero as $x$ increases.
@article{MZM_2006_80_6_a9,
     author = {M. A. Cherepnev},
     title = {Properties of large prime divisors of numbers of the form $p-1$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {920--925},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a9/}
}
TY  - JOUR
AU  - M. A. Cherepnev
TI  - Properties of large prime divisors of numbers of the form $p-1$
JO  - Matematičeskie zametki
PY  - 2006
SP  - 920
EP  - 925
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a9/
LA  - ru
ID  - MZM_2006_80_6_a9
ER  - 
%0 Journal Article
%A M. A. Cherepnev
%T Properties of large prime divisors of numbers of the form $p-1$
%J Matematičeskie zametki
%D 2006
%P 920-925
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a9/
%G ru
%F MZM_2006_80_6_a9
M. A. Cherepnev. Properties of large prime divisors of numbers of the form $p-1$. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 920-925. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a9/

[1] K. Sakurai, H. Shizuya, “Relationships among the computational powers of breaking discrete log cryptosystems”, Advances in cryptology—EUROCRYPT ' 95 (Saint-Malo, 1995), Lecture Notes in Comput. Sci., 921, Springer, Berlin, 1995, 341–355 | MR | Zbl

[2] M. A. Cherepnëv, “O svyazi slozhnostei zadach diskretnogo logarifmirovaniya i Diffi–Khellmana”, Diskr. matem., 8:3 (1996), 22–30 | MR | Zbl

[3] G. H. Hardy, S. Ramanujan, “The normal number of prime factors of a number $n$”, Q. J. Math., 48 (1917), 76–92 | Zbl

[4] P. Turán, “On a theorem of Hardy and Ramanujan”, J. London Math. Soc. (2), 30 (1929), 93–111

[5] P. Erdős, “On the normal number of prime factors of $p-1$ and some related problems concerning Euler's $\varphi$-function”, Q. J. Math. (Oxford), 6 (1935), 205–213 | DOI | Zbl

[6] K. Prakhar, Raspredelenie prostykh chisel, Mir, M., 1967 | MR | Zbl