Some conformal and projective scalar invariants of Riemannian manifolds
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 902-907
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that, on any closed oriented Riemannian $n$-manifold, the vector spaces of conformal Killing, Killing, and closed conformal Killing $r$-forms, where $1\le r\le n-1$,
have finite dimensions $t_r$, $k_r$, and $p_r$, respectively. The numbers $t_r$ are conformal scalar invariants of the manifold, and the numbers $k_r$ and $p_r$ are projective scalar invariants; they are dual in the sense that $t_r=t_{n-r}$ and $k_r=p_{n-r}$. Moreover, an explicit expression for a conformal Killing $r$-form on a conformally flat Riemannian $n$-manifold is given.
@article{MZM_2006_80_6_a7,
author = {S. E. Stepanov},
title = {Some conformal and projective scalar invariants of {Riemannian} manifolds},
journal = {Matemati\v{c}eskie zametki},
pages = {902--907},
publisher = {mathdoc},
volume = {80},
number = {6},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/}
}
S. E. Stepanov. Some conformal and projective scalar invariants of Riemannian manifolds. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 902-907. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/