Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_6_a7, author = {S. E. Stepanov}, title = {Some conformal and projective scalar invariants of {Riemannian} manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {902--907}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/} }
S. E. Stepanov. Some conformal and projective scalar invariants of Riemannian manifolds. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 902-907. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/
[1] A. Besse, Mnogoobraziya Einshteina, t. I, Mir, M., 1990 | MR | Zbl
[2] S. E. Stepanov, “Teoremy ischeznoveniya v affinnoi, rimanovoi i lorentsevoi geometriyakh”, Fundament. i prikl. matem., 11:1 (2005), 35–84 | MR | Zbl
[3] S. E. Stepanov, “O tenzore Killinga–Yano”, TMF, 134:3 (2003), 382–387 | MR
[4] R. Narasimkhan, Analiz na deistvitelnykh i kompleksnykh mnogoobraziyakh, Mir, M., 1971 | MR | Zbl
[5] S. E. Stepanov, “On conformal Killing 2-form of the electromagnetic field”, J. Geom. Phys., 33:3–4 (2000), 191–209 | DOI | MR | Zbl
[6] S. E. Stepanov, “Novyi silnyi laplasian na differentsialnykh formakh”, Matem. zametki, 76:3 (2004), 452–458 | MR | Zbl
[7] T. Branson, “Stein–Weiss operators and ellipticity”, J. Funct. Anal., 151:2 (1997), 334–383 | DOI | MR | Zbl
[8] R. Pale, Seminar po teoreme Ati–Zingera ob indekse, Mir, M., 1970 | MR
[9] M. Kora, “On conformal Killing forms and the proper space of $\Delta$ for $p$-forms”, Math. J. Okayama Univ., 22 (1980), 195–204 | MR | Zbl
[10] T. Kashiwada, “On conformal Killing tensor”, Nat. Sci. Rep. Ochanomizu Univ., 19 (1968), 67–74 | MR | Zbl