Some conformal and projective scalar invariants of Riemannian manifolds
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 902-907

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, on any closed oriented Riemannian $n$-manifold, the vector spaces of conformal Killing, Killing, and closed conformal Killing $r$-forms, where $1\le r\le n-1$, have finite dimensions $t_r$, $k_r$, and $p_r$, respectively. The numbers $t_r$ are conformal scalar invariants of the manifold, and the numbers $k_r$ and $p_r$ are projective scalar invariants; they are dual in the sense that $t_r=t_{n-r}$ and $k_r=p_{n-r}$. Moreover, an explicit expression for a conformal Killing $r$-form on a conformally flat Riemannian $n$-manifold is given.
@article{MZM_2006_80_6_a7,
     author = {S. E. Stepanov},
     title = {Some conformal and projective scalar invariants of {Riemannian} manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {902--907},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/}
}
TY  - JOUR
AU  - S. E. Stepanov
TI  - Some conformal and projective scalar invariants of Riemannian manifolds
JO  - Matematičeskie zametki
PY  - 2006
SP  - 902
EP  - 907
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/
LA  - ru
ID  - MZM_2006_80_6_a7
ER  - 
%0 Journal Article
%A S. E. Stepanov
%T Some conformal and projective scalar invariants of Riemannian manifolds
%J Matematičeskie zametki
%D 2006
%P 902-907
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/
%G ru
%F MZM_2006_80_6_a7
S. E. Stepanov. Some conformal and projective scalar invariants of Riemannian manifolds. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 902-907. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a7/