On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 864-884

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the eigenvalues the Sturm–Liouville operator $Ly= -y'' +q(x)y$ with potentials from the Sobolev space $W_2^{\theta-1}$, $\theta\ge0$, including the nonclassical case $\theta\in[0,1)$ in which the potential is a distribution. The results are obtained in new terms. Let $s_{2k}(q)=\lambda_{k}^{1/2}(q)-k$, $s_{2k-1}(q)=\mu_{k}^{1/2}(q)-k-1/2$, where $\{\lambda_k\}_1^{\infty}$ and $\{\mu_k\}_1^{\infty}$ are the sequences of eigenvalues of the operator $L$ generated by the Dirichlet and Dirichlet–Neumann boundary conditions, respectively. We construct special Hilbert spaces $\hat\ell_2^{\,\theta}$ such that the mapping $F\colon W^{\theta-1}_2\to\hat\ell_2^{\,\theta}$ defined by the equality $F(q)=\{s_n\}_1^{\infty}$ is well defined for all $\theta\ge0$. The main result is as follows: for $\theta>0$, the mapping $F$ is weakly nonlinear, i.e., can be expressed as $F(q)=Uq+\Phi(q)$, where $U$ is the isomorphism of the spaces $W^{\theta-1}_2$ and $\hat\ell_2^{\,\theta}$, and $\Phi(q)$ is a compact mapping. Moreover, we prove the estimate $\|\Phi(q)\|_{\tau}\le C\|q\|_{\theta-1}$, where the exact value of $\tau=\tau(\theta)>\theta-1$ is given and the constant $C$ depends only on the radius of the ball $\|q\|_{\theta-1}\le R$, but is independent of the function $q$ varying in this ball.
@article{MZM_2006_80_6_a5,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {On the eigenvalues of the {Sturm--Liouville} operator with potentials from {Sobolev} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {864--884},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
JO  - Matematičeskie zametki
PY  - 2006
SP  - 864
EP  - 884
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/
LA  - ru
ID  - MZM_2006_80_6_a5
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
%J Matematičeskie zametki
%D 2006
%P 864-884
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/
%G ru
%F MZM_2006_80_6_a5
A. M. Savchuk; A. A. Shkalikov. On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 864-884. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/