Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_6_a5, author = {A. M. Savchuk and A. A. Shkalikov}, title = {On the eigenvalues of the {Sturm--Liouville} operator with potentials from {Sobolev} spaces}, journal = {Matemati\v{c}eskie zametki}, pages = {864--884}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/} }
TY - JOUR AU - A. M. Savchuk AU - A. A. Shkalikov TI - On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces JO - Matematičeskie zametki PY - 2006 SP - 864 EP - 884 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/ LA - ru ID - MZM_2006_80_6_a5 ER -
A. M. Savchuk; A. A. Shkalikov. On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 864-884. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/
[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl
[2] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl
[3] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, t. 1, Fizmatlit, M., 1959 | MR | Zbl
[4] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | MR | Zbl
[5] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, 2003, 159–219 | MR | Zbl
[6] A. M. Savchuk, A. A. Shkalikov, “Inverse problem for Sturm–Liuville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12 (2005), 507–514 | MR | Zbl
[7] R. O. Hryniv, Ya. V. Mykytyuk, “1D Schrödinger operators with singular periodic potentials”, Meth. Func. Anal. Topology, 7:4 (2001), 31–42 | MR | Zbl
[8] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19 (2003), 665–684 | DOI | MR | Zbl
[9] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials, II. Reconstruction by two spectra”, Functional Analysis and its Applications, North-Holland Math. Stud., 197, eds. V. Kadets, W. Zelazko, North-Holland, Amsterdam, 2004, 97–114 | MR | Zbl
[10] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 309–329 | DOI | MR | Zbl
[11] R. O. Hryniv, Ya. V. Mykytyuk, “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 ; arXiv: math.FA/0407252 | DOI | MR | Zbl
[12] R. O. Hryniv, Ya. V. Mykytyuk, “Transformation operators with singular potentials”, Math. Phys. Anal. Geom., 7 (2004), 119–149 | DOI | MR | Zbl
[13] T. Kappeler, C. Möhr, “Estimates for periodic and Dirichlet eigenvalues of Schrödinger operator with singular potential”, J. Funct. Anal., 186:1 (2001), 62–91 | DOI | MR | Zbl
[14] E. Korotyaev, “Characterization of the spectrum of Schrödinger operator with periodic distributions”, Int. Math. Res. Not., 2003, no. 37, 2019–2031 | DOI | MR | Zbl
[15] M. I. Kadets, “Tochnoe znachenie postoyannoi Vinera–Peli”, Dokl. AN SSSR, 155:6 (1964), 1253–1254 | MR | Zbl
[16] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl
[17] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[18] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl
[19] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Acad. Press, Orlando, 1987 | MR | Zbl
[20] Zh. Dedonne, Osnovy sovremennogo analiza, Mir, M., 1964 | MR | Zbl
[21] L. Tartar, “Interpolation non linéaire et regularité”, J. Funct. Anal., 9 (1972), 469–489 | DOI | MR | Zbl