On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 864-884.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the asymptotic behavior of the eigenvalues the Sturm–Liouville operator $Ly= -y'' +q(x)y$ with potentials from the Sobolev space $W_2^{\theta-1}$, $\theta\ge0$, including the nonclassical case $\theta\in[0,1)$ in which the potential is a distribution. The results are obtained in new terms. Let $s_{2k}(q)=\lambda_{k}^{1/2}(q)-k$, $s_{2k-1}(q)=\mu_{k}^{1/2}(q)-k-1/2$, where $\{\lambda_k\}_1^{\infty}$ and $\{\mu_k\}_1^{\infty}$ are the sequences of eigenvalues of the operator $L$ generated by the Dirichlet and Dirichlet–Neumann boundary conditions, respectively. We construct special Hilbert spaces $\hat\ell_2^{\,\theta}$ such that the mapping $F\colon W^{\theta-1}_2\to\hat\ell_2^{\,\theta}$ defined by the equality $F(q)=\{s_n\}_1^{\infty}$ is well defined for all $\theta\ge0$. The main result is as follows: for $\theta>0$, the mapping $F$ is weakly nonlinear, i.e., can be expressed as $F(q)=Uq+\Phi(q)$, where $U$ is the isomorphism of the spaces $W^{\theta-1}_2$ and $\hat\ell_2^{\,\theta}$, and $\Phi(q)$ is a compact mapping. Moreover, we prove the estimate $\|\Phi(q)\|_{\tau}\le C\|q\|_{\theta-1}$, where the exact value of $\tau=\tau(\theta)>\theta-1$ is given and the constant $C$ depends only on the radius of the ball $\|q\|_{\theta-1}\le R$, but is independent of the function $q$ varying in this ball.
@article{MZM_2006_80_6_a5,
     author = {A. M. Savchuk and A. A. Shkalikov},
     title = {On the eigenvalues of the {Sturm--Liouville} operator with potentials from {Sobolev} spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {864--884},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/}
}
TY  - JOUR
AU  - A. M. Savchuk
AU  - A. A. Shkalikov
TI  - On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
JO  - Matematičeskie zametki
PY  - 2006
SP  - 864
EP  - 884
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/
LA  - ru
ID  - MZM_2006_80_6_a5
ER  - 
%0 Journal Article
%A A. M. Savchuk
%A A. A. Shkalikov
%T On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces
%J Matematičeskie zametki
%D 2006
%P 864-884
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/
%G ru
%F MZM_2006_80_6_a5
A. M. Savchuk; A. A. Shkalikov. On the eigenvalues of the Sturm--Liouville operator with potentials from Sobolev spaces. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 864-884. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a5/

[1] V. A. Marchenko, Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR | Zbl

[2] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[3] I. M. Gelfand, G. E. Shilov, Obobschennye funktsii i deistviya nad nimi, t. 1, Fizmatlit, M., 1959 | MR | Zbl

[4] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | MR | Zbl

[5] A. M. Savchuk, A. A. Shkalikov, “Operatory Shturma–Liuvillya s potentsialami-raspredeleniyami”, Tr. MMO, 64, 2003, 159–219 | MR | Zbl

[6] A. M. Savchuk, A. A. Shkalikov, “Inverse problem for Sturm–Liuville operators with distribution potentials: Reconstruction from two spectra”, Russ. J. Math. Phys., 12 (2005), 507–514 | MR | Zbl

[7] R. O. Hryniv, Ya. V. Mykytyuk, “1D Schrödinger operators with singular periodic potentials”, Meth. Func. Anal. Topology, 7:4 (2001), 31–42 | MR | Zbl

[8] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials”, Inverse Problems, 19 (2003), 665–684 | DOI | MR | Zbl

[9] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials, II. Reconstruction by two spectra”, Functional Analysis and its Applications, North-Holland Math. Stud., 197, eds. V. Kadets, W. Zelazko, North-Holland, Amsterdam, 2004, 97–114 | MR | Zbl

[10] R. O. Hryniv, Ya. V. Mykytyuk, “Inverse spectral problems for Sturm–Liouville operators with singular potentials. IV. Potentials in the Sobolev space scale”, Proc. Edinb. Math. Soc. (2), 49:2 (2006), 309–329 | DOI | MR | Zbl

[11] R. O. Hryniv, Ya. V. Mykytyuk, “Eigenvalue asymptotics for Sturm–Liouville operators with singular potentials”, J. Funct. Anal., 238:1 (2006), 27–57 ; arXiv: math.FA/0407252 | DOI | MR | Zbl

[12] R. O. Hryniv, Ya. V. Mykytyuk, “Transformation operators with singular potentials”, Math. Phys. Anal. Geom., 7 (2004), 119–149 | DOI | MR | Zbl

[13] T. Kappeler, C. Möhr, “Estimates for periodic and Dirichlet eigenvalues of Schrödinger operator with singular potential”, J. Funct. Anal., 186:1 (2001), 62–91 | DOI | MR | Zbl

[14] E. Korotyaev, “Characterization of the spectrum of Schrödinger operator with periodic distributions”, Int. Math. Res. Not., 2003, no. 37, 2019–2031 | DOI | MR | Zbl

[15] M. I. Kadets, “Tochnoe znachenie postoyannoi Vinera–Peli”, Dokl. AN SSSR, 155:6 (1964), 1253–1254 | MR | Zbl

[16] Kh. Tribel, Teoriya funktsionalnykh prostranstv, Mir, M., 1986 | MR | Zbl

[17] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl

[18] G. Borg, “Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe. Bestimmung der Differentialgleichung durch die Eigenwerte”, Acta Math., 78 (1946), 1–96 | DOI | MR | Zbl

[19] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Acad. Press, Orlando, 1987 | MR | Zbl

[20] Zh. Dedonne, Osnovy sovremennogo analiza, Mir, M., 1964 | MR | Zbl

[21] L. Tartar, “Interpolation non linéaire et regularité”, J. Funct. Anal., 9 (1972), 469–489 | DOI | MR | Zbl