A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 838-855.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a characterization of the adjacency of vertices in the class of permutation polytopes generated by arbitrary subsets of symmetric groups. In particular, this class contains polytopes for the well-known classical problems, such as the assignment problem, $2$- and $3$-combinations, the traveling salesman problem and their various modifications. Up to now, the problem of vertex adjacency has been studied for a single polytope only. In the present paper, we obtain, for general permutation polytopes, necessary and sufficient conditions that guarantee that two given vertices are adjacent (or not) to each other. The conditions are formulated in terms of permutations and of the solvability of certain special systems of linear equations. The presently known adjacency criteria for vertices of polytopes for the assignment problem are simple corollaries of our conditions. The latter allow us to develop a general algorithmic scheme for recognizing vertex adjacency of a general permutation polytope and estimate its complexity.
@article{MZM_2006_80_6_a3,
     author = {V. M. Demidenko},
     title = {A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {838--855},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/}
}
TY  - JOUR
AU  - V. M. Demidenko
TI  - A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups
JO  - Matematičeskie zametki
PY  - 2006
SP  - 838
EP  - 855
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/
LA  - ru
ID  - MZM_2006_80_6_a3
ER  - 
%0 Journal Article
%A V. M. Demidenko
%T A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups
%J Matematičeskie zametki
%D 2006
%P 838-855
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/
%G ru
%F MZM_2006_80_6_a3
V. M. Demidenko. A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 838-855. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/

[1] B. Grünbaum, Convex Polytopes, Wiley, London, 1967 | MR | Zbl

[2] D. Hausmann, Adjacency on Polytopes in Combinatorial Optimization, Math. Systems in Economics, 49, Meisenheim am Glan, Haim, 1980 | MR | Zbl

[3] M. L. Balinski, A. Russakoff, “On the assignment polytope”, SIAM Rev., 16:4 (1974), 516–525 | DOI | MR | Zbl

[4] M. W. Padberg, M. R. Rao, “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Programming, 7 (1974), 32–45 | DOI | MR | Zbl

[5] I. Heller, “On the traveling salesman problem”, Proc. Second Symp. Linear Programming, V. 2, Washington, 1955, 643–665 | MR

[6] I. Heller, “Neighbor relations on the convex of cyclic permutations”, Pacific J. Math., 6:3 (1956), 467–477 | MR | Zbl

[7] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, The Traveling Salesman Problem, Wiley, Chichester, 1985 | MR | Zbl

[8] G. Gutin, A. P. Punnen, The Traveling Salesman Problem and Its Variations, Kluwer, Dordrecht, 2002 | MR | Zbl

[9] K. G. Murty, “On the tours of a traveling salesman”, SIAM J. Control. Optim., 7:1 (1969), 122–131 | DOI | MR | Zbl

[10] M. R. Rao, “Adjacency of the traveling salesman tours and $0-1$ vertices”, SIAM J. Appl. Math., 30:2 (1976), 191–198 | DOI | MR | Zbl

[11] E. Balas, M. W. Padberg, “Adjacent vertices of the all $0-1$ programming polytope”, RAIRO Rech. Opér., 13:1 (1979), 3–12 | MR | Zbl

[12] V. I. Sarvanov, O mnogogrannikakh, svyazannykh s optimizatsiei na podstanovkakh, Preprint 7(23), In-t matem. AN BSSR, Minsk, 1977

[13] V. M. Demidenko, V. A. Shlyk, “O smezhnosti vershin mnogogrannikov zadach kombinatornoi optimizatsii”, Dokl. AN BSSR, 33:9 (1989), 773–776 | MR | Zbl

[14] V. M. Demidenko, “Usloviya silnoi razreshimosti optimizatsionnykh zadach na podstanovkakh i ikh primenenie”, Dokl. NAN Belarusi, 45:4 (2001), 9–12 | MR

[15] C. H. Papadimitriou, “The adjacency relation on the traveling salesman polytope is NP-complete”, Math. Programming, 14:3 (1978), 312–324 | DOI | MR | Zbl

[16] V. M. Demidenko, Kriterii smezhnosti vershin na vypukloi obolochke matrits podstanovok (mnogogrannik zadachi o kommivoyazhere), Preprint 28(338), In-t matem. AN BSSR, Minsk, 1988

[17] V. M. Demidenko, “Vertices adjacency criterion for polytope of the traveling salesman problem”, Proceeding of the International Conference on Operation Research, Annual Meeting: GOR, ÖGOR, SIGOPT (ETH Zürich, 31 August–3 September 1998), Zürich, 1998, 54–55

[18] D. A. Suprunenko, Gruppy podstanovok, Navuka i tekhnika, Minsk, 1996

[19] V. A. Emelichev, M. M. Kovalev, M. K. Kravtsov, Mnogogranniki, grafy, optimizatsiya (kombinatornaya teoriya mnogogrannikov), Nauka, M., 1981 | MR | Zbl

[20] A. Skhreiver, Teoriya lineinogo i tselochislennogo programmirovaniya, t. 1, Mir, M., 1991 | MR | Zbl