Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_6_a3, author = {V. M. Demidenko}, title = {A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups}, journal = {Matemati\v{c}eskie zametki}, pages = {838--855}, publisher = {mathdoc}, volume = {80}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/} }
TY - JOUR AU - V. M. Demidenko TI - A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups JO - Matematičeskie zametki PY - 2006 SP - 838 EP - 855 VL - 80 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/ LA - ru ID - MZM_2006_80_6_a3 ER -
V. M. Demidenko. A criterion for the adjacency of vertices of polytopes generated by subsets of symmetric groups. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 838-855. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a3/
[1] B. Grünbaum, Convex Polytopes, Wiley, London, 1967 | MR | Zbl
[2] D. Hausmann, Adjacency on Polytopes in Combinatorial Optimization, Math. Systems in Economics, 49, Meisenheim am Glan, Haim, 1980 | MR | Zbl
[3] M. L. Balinski, A. Russakoff, “On the assignment polytope”, SIAM Rev., 16:4 (1974), 516–525 | DOI | MR | Zbl
[4] M. W. Padberg, M. R. Rao, “The travelling salesman problem and a class of polyhedra of diameter two”, Math. Programming, 7 (1974), 32–45 | DOI | MR | Zbl
[5] I. Heller, “On the traveling salesman problem”, Proc. Second Symp. Linear Programming, V. 2, Washington, 1955, 643–665 | MR
[6] I. Heller, “Neighbor relations on the convex of cyclic permutations”, Pacific J. Math., 6:3 (1956), 467–477 | MR | Zbl
[7] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys, The Traveling Salesman Problem, Wiley, Chichester, 1985 | MR | Zbl
[8] G. Gutin, A. P. Punnen, The Traveling Salesman Problem and Its Variations, Kluwer, Dordrecht, 2002 | MR | Zbl
[9] K. G. Murty, “On the tours of a traveling salesman”, SIAM J. Control. Optim., 7:1 (1969), 122–131 | DOI | MR | Zbl
[10] M. R. Rao, “Adjacency of the traveling salesman tours and $0-1$ vertices”, SIAM J. Appl. Math., 30:2 (1976), 191–198 | DOI | MR | Zbl
[11] E. Balas, M. W. Padberg, “Adjacent vertices of the all $0-1$ programming polytope”, RAIRO Rech. Opér., 13:1 (1979), 3–12 | MR | Zbl
[12] V. I. Sarvanov, O mnogogrannikakh, svyazannykh s optimizatsiei na podstanovkakh, Preprint 7(23), In-t matem. AN BSSR, Minsk, 1977
[13] V. M. Demidenko, V. A. Shlyk, “O smezhnosti vershin mnogogrannikov zadach kombinatornoi optimizatsii”, Dokl. AN BSSR, 33:9 (1989), 773–776 | MR | Zbl
[14] V. M. Demidenko, “Usloviya silnoi razreshimosti optimizatsionnykh zadach na podstanovkakh i ikh primenenie”, Dokl. NAN Belarusi, 45:4 (2001), 9–12 | MR
[15] C. H. Papadimitriou, “The adjacency relation on the traveling salesman polytope is NP-complete”, Math. Programming, 14:3 (1978), 312–324 | DOI | MR | Zbl
[16] V. M. Demidenko, Kriterii smezhnosti vershin na vypukloi obolochke matrits podstanovok (mnogogrannik zadachi o kommivoyazhere), Preprint 28(338), In-t matem. AN BSSR, Minsk, 1988
[17] V. M. Demidenko, “Vertices adjacency criterion for polytope of the traveling salesman problem”, Proceeding of the International Conference on Operation Research, Annual Meeting: GOR, ÖGOR, SIGOPT (ETH Zürich, 31 August–3 September 1998), Zürich, 1998, 54–55
[18] D. A. Suprunenko, Gruppy podstanovok, Navuka i tekhnika, Minsk, 1996
[19] V. A. Emelichev, M. M. Kovalev, M. K. Kravtsov, Mnogogranniki, grafy, optimizatsiya (kombinatornaya teoriya mnogogrannikov), Nauka, M., 1981 | MR | Zbl
[20] A. Skhreiver, Teoriya lineinogo i tselochislennogo programmirovaniya, t. 1, Mir, M., 1991 | MR | Zbl