On $\sigma$-algebras related to the measurability of compositions
Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 926-933.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a measurable space $(T,\mathscr T)$, a set $X$, and a map $\varphi\colon T\to X$, the $\sigma$-algebras $$ \mathfrak N_\varphi=\{B\subset X:\varphi^{-1}(B)\in\mathscr T\},\qquad \mathfrak M_\varphi=\{D\subset T\times X:G_\varphi^{-1}(D)\in\mathscr T\}, $$ $\mathfrak N_\Phi=\bigcap_{\varphi\in\Phi}\mathfrak N_\varphi$, and $\mathfrak M_\Phi=\bigcap_{\varphi\in\Phi}\mathfrak M_\varphi$, where $G_\varphi(t)=(t,\varphi(t))$ and $\Phi\subset X^T$, are considered. These $\sigma$-algebras are used to characterize the $(\mathscr T,\mathscr B)$-measurability of the compositions $g\circ\varphi$ and $f\circ G_\varphi$, where $g\colon X\to Y$, $f\colon T\times X\to Y$, and $(Y,\mathscr B)$ is a measurable space. Their elements are described without using the operations $\varphi^{-1}$ and $G_\varphi^{-1}$.
@article{MZM_2006_80_6_a10,
     author = {I. V. Shragin},
     title = {On $\sigma$-algebras related to the measurability of compositions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {926--933},
     publisher = {mathdoc},
     volume = {80},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a10/}
}
TY  - JOUR
AU  - I. V. Shragin
TI  - On $\sigma$-algebras related to the measurability of compositions
JO  - Matematičeskie zametki
PY  - 2006
SP  - 926
EP  - 933
VL  - 80
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a10/
LA  - ru
ID  - MZM_2006_80_6_a10
ER  - 
%0 Journal Article
%A I. V. Shragin
%T On $\sigma$-algebras related to the measurability of compositions
%J Matematičeskie zametki
%D 2006
%P 926-933
%V 80
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a10/
%G ru
%F MZM_2006_80_6_a10
I. V. Shragin. On $\sigma$-algebras related to the measurability of compositions. Matematičeskie zametki, Tome 80 (2006) no. 6, pp. 926-933. http://geodesic.mathdoc.fr/item/MZM_2006_80_6_a10/

[1] I. V. Shragin, “Usloviya izmerimosti superpozitsii”, Dokl. AN CCCP, 197:2 (1971), 295–298 | MR | Zbl

[2] I. V. Shragin, “Superpozitsionnaya izmerimost”, Izv. vuzov. Matem., 1975, no. 1, 82–92 | MR | Zbl

[3] J. Appell, P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[4] Yu. V. Nepomnyaschikh, A. V. Ponosov, “Lokalnye operatory v nekotorykh podprostranstvakh prostranstva $L_0$”, Izv. vuzov. Matem., 1999, no. 6, 50–64 | MR | Zbl