Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 668-682.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a one-dimensional perturbation of the convolution operator. We study the inverse reconstruction problem for the convolution component using the characteristic numbers under the assumption that the perturbation summand is known a priori. The problem is reduced to the solution of the so-called basic nonlinear integral equation with singularity. We prove the global solvability of this nonlinear equation. On the basis of these results, we prove a uniqueness theorem and obtain necessary and sufficient conditions for the solvability of the inverse problem.
@article{MZM_2006_80_5_a2,
     author = {S. A. Buterin},
     title = {Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {668--682},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/}
}
TY  - JOUR
AU  - S. A. Buterin
TI  - Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator
JO  - Matematičeskie zametki
PY  - 2006
SP  - 668
EP  - 682
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/
LA  - ru
ID  - MZM_2006_80_5_a2
ER  - 
%0 Journal Article
%A S. A. Buterin
%T Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator
%J Matematičeskie zametki
%D 2006
%P 668-682
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/
%G ru
%F MZM_2006_80_5_a2
S. A. Buterin. Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 668-682. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/

[1] V. A. Yurko, Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo SPI, Saratov, 2001

[2] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl

[3] V. A. Yurko, “Obratnaya zadacha dlya integralnykh operatorov”, Matem. zametki, 37:5 (1985), 690–701 | MR | Zbl

[4] A. P. Khromov, “Konechnomernye vozmuscheniya volterrovykh operatorov”, Avtoreferat diss. ... d.f.-m.n., Matem. zametki, 16:4 (1974), 669–680 | MR | Zbl

[5] A. P. Khromov, “O porozhdayuschikh funktsiyakh integralnykh volterrovykh operatorov”, Teoriya funktsii i priblizhenii, Ch. 1, Izd-vo Sarat. un-ta, Saratov, 1987, 90–96 | MR | Zbl

[6] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[7] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[8] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl