Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_5_a2, author = {S. A. Buterin}, title = {Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator}, journal = {Matemati\v{c}eskie zametki}, pages = {668--682}, publisher = {mathdoc}, volume = {80}, number = {5}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/} }
TY - JOUR AU - S. A. Buterin TI - Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator JO - Matematičeskie zametki PY - 2006 SP - 668 EP - 682 VL - 80 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/ LA - ru ID - MZM_2006_80_5_a2 ER -
S. A. Buterin. Inverse spectral reconstruction problem for the convolution operator perturbed by a one-dimensional operator. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 668-682. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a2/
[1] V. A. Yurko, Obratnye spektralnye zadachi i ikh prilozheniya, Izd-vo SPI, Saratov, 2001
[2] V. Yurko, Method of Spectral Mappings in the Inverse Problem Theory, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2002 | MR | Zbl
[3] V. A. Yurko, “Obratnaya zadacha dlya integralnykh operatorov”, Matem. zametki, 37:5 (1985), 690–701 | MR | Zbl
[4] A. P. Khromov, “Konechnomernye vozmuscheniya volterrovykh operatorov”, Avtoreferat diss. ... d.f.-m.n., Matem. zametki, 16:4 (1974), 669–680 | MR | Zbl
[5] A. P. Khromov, “O porozhdayuschikh funktsiyakh integralnykh volterrovykh operatorov”, Teoriya funktsii i priblizhenii, Ch. 1, Izd-vo Sarat. un-ta, Saratov, 1987, 90–96 | MR | Zbl
[6] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl
[7] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962 | MR | Zbl
[8] K. Iosida, Funktsionalnyi analiz, Mir, M., 1967 | MR | Zbl