On the Laplacian spectrum of an infinite graph
Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 773-785.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce the notion of Laplacian spectrum of an infinite countable graph in a different way than in the papers by B. Mohar. We prove some basic properties of this type of spectrum. The approach used is in line with our approach to the limiting spectrum of an infinite graph. The technique of the Laplacian spectrum of finite graphs is essential in this approach.
@article{MZM_2006_80_5_a12,
     author = {A. Torgasev and M. Petrovi\'c},
     title = {On the {Laplacian} spectrum of an infinite graph},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--785},
     publisher = {mathdoc},
     volume = {80},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a12/}
}
TY  - JOUR
AU  - A. Torgasev
AU  - M. Petrović
TI  - On the Laplacian spectrum of an infinite graph
JO  - Matematičeskie zametki
PY  - 2006
SP  - 773
EP  - 785
VL  - 80
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a12/
LA  - ru
ID  - MZM_2006_80_5_a12
ER  - 
%0 Journal Article
%A A. Torgasev
%A M. Petrović
%T On the Laplacian spectrum of an infinite graph
%J Matematičeskie zametki
%D 2006
%P 773-785
%V 80
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a12/
%G ru
%F MZM_2006_80_5_a12
A. Torgasev; M. Petrović. On the Laplacian spectrum of an infinite graph. Matematičeskie zametki, Tome 80 (2006) no. 5, pp. 773-785. http://geodesic.mathdoc.fr/item/MZM_2006_80_5_a12/

[1] B. Mohar, “The spectrum of an infinite graph”, Linear Algebra Appl., 48 (1982), 245–256 | DOI | MR | Zbl

[2] B. Mohar, W. Woess, “A survey on spectra of infinite graphs”, Bull. London Math. Soc., 21 (1989), 209–234 | DOI | MR | Zbl

[3] B. Mohar, “The Laplacian spectrum of graphs”, Graph Theory, Combinatorics and Applications, eds. Y. Alard, G. Chartrand, O. R. Ollerman, A. J. Schwenk, J. Willy, New York, 1991, 871–898 | MR | Zbl

[4] B. Mohar, “Some relations between analytic and geometric properties of infinite graphs”, Discrete Math., 95 (1991), 193–219 | DOI | MR | Zbl

[5] A. Torgašev, “Infinite graphs with the least limiting eigenvalue greater than $-2$”, Linear Algebra Appl., 82 (1986), 133–141 | DOI | MR | Zbl

[6] A. Torgašev, “The limiting spectrum of infinite graphs”, Review of Research Novi Sad, 23 (1993), 259–268 | MR | Zbl

[7] D. M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, Ann. Discrete Math., 36, North-Holland, Amsterdam, 1988 | MR | Zbl

[8] D. M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980 | MR | Zbl

[9] R. Grone, R. Merris, V. S. Sunder, “The Laplacian spectrum of a graph”, SIAM J. Matrix Anal. Appl., 11 (1990), 218–238 | DOI | MR | Zbl

[10] R. Merris, “Laplacian matrices of graphs, A survey”, Linear Algebra Appl., 197–198 (1994), 143–176 | DOI | MR | Zbl

[11] A. Torgašev, “On spectra of infinite graphs”, Publ. Inst. Math. (Beograd), 29(43) (1981), 269–282 | MR | Zbl

[12] A. Torgašev, “On infinite graphs whose spectrum is greater than $-2$”, Bull. Acad. Serbe Sci. Arts 84 (Sci. Math.), 13 (1984), 21–35 | MR | Zbl