Integrability of optimal mappings
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 546-560.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the integrability of optimal mappings $T$ taking a probability measure $\mu$ to another measure $g\cdot\mu$. We assume that $T$ minimizes the cost function $c$ and $\mu$ satisfies some special inequalities related to $c$ (the infimum-convolution inequality or the logarithmic $c$-Sobolev inequality). The results obtained are applied to the analysis of measures of the form $\exp(-|x|^{\alpha})$.
@article{MZM_2006_80_4_a7,
     author = {A. V. Kolesnikov},
     title = {Integrability of optimal mappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {546--560},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/}
}
TY  - JOUR
AU  - A. V. Kolesnikov
TI  - Integrability of optimal mappings
JO  - Matematičeskie zametki
PY  - 2006
SP  - 546
EP  - 560
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/
LA  - ru
ID  - MZM_2006_80_4_a7
ER  - 
%0 Journal Article
%A A. V. Kolesnikov
%T Integrability of optimal mappings
%J Matematičeskie zametki
%D 2006
%P 546-560
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/
%G ru
%F MZM_2006_80_4_a7
A. V. Kolesnikov. Integrability of optimal mappings. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 546-560. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/

[1] Y. Brenier, “Polar factorization and monotone rearrangement of vector valued functions”, Comm. Pure Appl. Math., 44 (1991), 375–417 | DOI | MR | Zbl

[2] R. J. McCann, “Existence and uniqueness of monotone measure-preserving maps”, Duke Math. J., 80 (1995), 309–323 | DOI | MR | Zbl

[3] L. Ambrosio, N. Gigli, G. Savaré, Gradient Flows in Metric Spaces and in the Wasserstein Spaces of Probability Measures, Lectures in Math., ETH, Zürich, 2005 | MR | Zbl

[4] S. T. Rachev, L. Rüschendorf, Mass Transportation Problems, V. I, II, Springer, New York, 1998 | MR | MR | Zbl

[5] C. Villani, Topics in Optimal Transportation, Amer. Math. Soc., Providence, RI, 2003 | MR | Zbl

[6] L. Gross, “Logarithmic Sobolev inequalities”, Amer. J. Math., 97:4 (1975), 1061–1083 | DOI | MR

[7] V. I. Bogachev, Osnovy teorii mery, t. 1, 2, RKhD, Moskva–Izhevsk, 2003

[8] F. Y. Wang, “Logarithmic Sobolev inequalities on non-compact Riemannian manifolds”, Probab. Theory Related Fields, 109 (1997), 417–424 | DOI | MR | Zbl

[9] M. Ledoux, The Concentration of Measure Phenomenon, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[10] C. Ané, S. Blachère, D. Chafai, P. Fougère, I. Gentil, F. Malrieu, C. Roberto, G. Scheffer, Sur les inégalités de Sobolev logarithmiques, Panorama et Synthèses, 10, Soc. Math. France, Paris, 2002 | MR | Zbl

[11] S. G. Bobkov, I. Gentil, M. Ledoux, “Hypercontractivity of Hamilton–Jacobi equations”, J. Math. Pures Appl., 80:7 (2001), 669–696 | DOI | MR | Zbl

[12] M. Talagrand, “Transportation cost for Gaussian and other product measures”, Geom. Funct. Anal., 6 (1996), 587–600 | DOI | MR | Zbl

[13] F. Otto, C. Villani, “Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173 (2000), 361–400 | DOI | MR | Zbl

[14] Y. Bolley, C. Villani, “Weighted Csiszár–Kullback–Pinsker inequalities and applications to transportation cost inequalities”, Ann. Faculté des Sciences de Toulouse, 14 (2005), 331–352 | MR | Zbl

[15] H. Djellout, A. Guillin, L. Wu, “Transportation cost-information inequalities and applications to random dynamical systems and diffusions”, Ann. Probab., 32:3B (2004), 2702–2732 | DOI | MR | Zbl

[16] P. Cattiaux, A. Guillin, Talagrand's like quadratic transportation cost inequalities, Preprint, 2004 | MR | Zbl

[17] X. Fernique, “Extension du théorème de Cameron–Martin aux translations aléatoires. II. Intégrabilité des densités”, High Dimensional Probability, III (Sandjberg, 2002), Progr. Probab., 55, Birkhäuser, Basel, 2003, 95–102 | MR | Zbl

[18] V. I. Bogachev, A. V. Kolesnikov, “Integriruemost absolyutno nepreryvnykh preobrazovanii mer i primeneniya k optimalnoi transportirovke mass”, Teoriya veroyatn. i ee primen., 50:3 (2005), 3–25 | MR

[19] I. Gentil, A. Guillin, L. Miclo, “Modified logarithmic Sobolev inequalities and transportation inequalities”, Probab. Theory Related Fields, 133:3 (2005), 409–436 | DOI | MR | Zbl

[20] W. Gangbo, R. J. McCann, “The geometry of optimal transportation”, Acta Math., 177 (1996), 113–161 | DOI | MR | Zbl

[21] S. G. Bobkov, B. Zegarlinski, Entropy bounds and isoperimetry, Mem. Amer. Math. Soc., 176, no. 829, 2005 | MR | Zbl

[22] S. G. Bobkov, F. Götze, “Exponential integrability and transportation cost related to logarithmic Sobolev inequality”, J. Funct. Anal., 163 (1999), 1–28 | DOI | MR | Zbl

[23] R. Latała, K. Oleskiewicz, “Between Sobolev and Poincaré”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1745, Springer, Berlin, 2000, 147–168 | MR | Zbl

[24] F. Barthe, P. Cattiaux, C. Roberto, “Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry”, Revista Mat. Iberoamericana (to appear); , 2004 math.PR/0407219

[25] F. Y. Wang, “Probability distance inequalities on Riemannian manifolds and path spaces”, J. Funct. Anal., 206 (2004), 167–190 | DOI | MR | Zbl