Integrability of optimal mappings
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 546-560

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the integrability of optimal mappings $T$ taking a probability measure $\mu$ to another measure $g\cdot\mu$. We assume that $T$ minimizes the cost function $c$ and $\mu$ satisfies some special inequalities related to $c$ (the infimum-convolution inequality or the logarithmic $c$-Sobolev inequality). The results obtained are applied to the analysis of measures of the form $\exp(-|x|^{\alpha})$.
@article{MZM_2006_80_4_a7,
     author = {A. V. Kolesnikov},
     title = {Integrability of optimal mappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {546--560},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/}
}
TY  - JOUR
AU  - A. V. Kolesnikov
TI  - Integrability of optimal mappings
JO  - Matematičeskie zametki
PY  - 2006
SP  - 546
EP  - 560
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/
LA  - ru
ID  - MZM_2006_80_4_a7
ER  - 
%0 Journal Article
%A A. V. Kolesnikov
%T Integrability of optimal mappings
%J Matematičeskie zametki
%D 2006
%P 546-560
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/
%G ru
%F MZM_2006_80_4_a7
A. V. Kolesnikov. Integrability of optimal mappings. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 546-560. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a7/