When is an Abelian group isomorphic to its endomorphism group?
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 536-545
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, necessary and sufficient conditions for an Abelian group $A$ to be isomorphic to the endomorphism group $\operatorname{End}(A)$ are obtained. The classes of periodic Abelian groups, divisible Abelian groups, nonreduced Abelian groups, and reduced algebraically compact Abelian groups are considered. For certain classes of Abelian groups, the isomorphism problem for a group and its endomorphism group is solved under the assumption that the endomorphism group itself has the corresponding property.
@article{MZM_2006_80_4_a6,
author = {E. M. Kolenova and A. M. Sebel'din},
title = {When is an {Abelian} group isomorphic to its endomorphism group?},
journal = {Matemati\v{c}eskie zametki},
pages = {536--545},
year = {2006},
volume = {80},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a6/}
}
E. M. Kolenova; A. M. Sebel'din. When is an Abelian group isomorphic to its endomorphism group?. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 536-545. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a6/
[1] L. Fuks, Beskonechnye abelevy gruppy, t. 1, Mir, M., 1974 | MR | Zbl
[2] L. Fuchs, Abelian Groups, Hungar. Acad. Sci., Budapest., 1966
[3] A. M. Sebeldin, “Gruppy gomomorfizmov vpolne razlozhimykh abelevykh grupp bez krucheniya”, Izv. vuzov. Matem., 1973, no. 7, 77–84 | MR | Zbl
[4] A. M. Sebeldin, “O gruppakh gomomorfizmov abelevykh grupp bez krucheniya”, Gruppy i moduli, Izd-vo Tomsk. un-ta, Tomsk, 1976, 70–77
[5] A. M. Sebeldin, “Isomorphisme naturel des groupes des homomorphismes des groupes abeliens”, Ann. de l'IPGANC, 8A (1982), 155–158