Irreducible Fuchsian system with reducible monodromy representation
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 501-508.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present an example of the reducible representation $\chi=\chi_1\oplus\chi_2$, which, on the one hand, is the monodromy representation of a Fuchsian system. On the other hand, the representation $\chi_2$ is a counterexample to the Riemann–Hilbert problem. Using a meromorphic gauge transformation, one cannot reduce this system to the direct sum of Fuchsian systems corresponding to the subrepresentations.
@article{MZM_2006_80_4_a2,
     author = {I. V. Vyugin},
     title = {Irreducible {Fuchsian} system with reducible monodromy representation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {501--508},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a2/}
}
TY  - JOUR
AU  - I. V. Vyugin
TI  - Irreducible Fuchsian system with reducible monodromy representation
JO  - Matematičeskie zametki
PY  - 2006
SP  - 501
EP  - 508
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a2/
LA  - ru
ID  - MZM_2006_80_4_a2
ER  - 
%0 Journal Article
%A I. V. Vyugin
%T Irreducible Fuchsian system with reducible monodromy representation
%J Matematičeskie zametki
%D 2006
%P 501-508
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a2/
%G ru
%F MZM_2006_80_4_a2
I. V. Vyugin. Irreducible Fuchsian system with reducible monodromy representation. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 501-508. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a2/

[1] S. Malek, “Fuchsian systems with reducible monodromy are meromorphically equivalent to reducible Fuchsian systems”, Tr. MIAN, 236, 2002, 489–490 | MR | Zbl

[2] A. A. Bolibrukh, Fuksovy differentsialnye uravneniya i golomorfnye rassloeniya, MTsNMO, M., 2000

[3] A. A. Bolibrukh, “Obratnye zadachi monodromii analiticheskoi teorii differentsialnykh uravnenii”, Matematicheskie sobytiya XX veka, Fazis, M., 2004, 53–79

[4] A. I. Gladyshev, “On the Riemann–Hilbert problem in dimention 4”, J. Dynamical Control Systems, 6:2 (2000), 219–264 | DOI | MR | Zbl

[5] S. Malek, “On Fuchsian systems with decomposable monodromy”, Tr. MIAN, 238, 2002, 196–203 | MR | Zbl

[6] H. Esnault, C. Hertling, “Semistable bundles on curves and reducible representations of the fundamental group”, Internat. J. Math., 12:7 (2001), 847–855 | DOI | MR | Zbl

[7] I. V. Vyugin, “O fuksovykh sistemakh s razlozhimoi monodromiei”, Tezisy dokladov XXVI Konferentsii molodykh uchenykh MGU, MGU, M., 2004, 32–33

[8] A. A. Bolibrukh, “Problema Rimana–Gilberta na kompaktnoi rimanovoi poverkhnosti”, Tr. MIAN, 238, 2002, 55–69 | MR | Zbl

[9] A. A. Bolibrukh, “K voprosu o suschestvovanii fuksovykh sistem s dannymi asimptotikami”, Tr. MIAN, 216, 1997, 32–44 | MR | Zbl