Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_4_a13, author = {R. G. Salakhudinov}, title = {Estimation of the $L_p$-norms of stress functions for finitely connected plane domains}, journal = {Matemati\v{c}eskie zametki}, pages = {601--612}, publisher = {mathdoc}, volume = {80}, number = {4}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/} }
TY - JOUR AU - R. G. Salakhudinov TI - Estimation of the $L_p$-norms of stress functions for finitely connected plane domains JO - Matematičeskie zametki PY - 2006 SP - 601 EP - 612 VL - 80 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/ LA - ru ID - MZM_2006_80_4_a13 ER -
R. G. Salakhudinov. Estimation of the $L_p$-norms of stress functions for finitely connected plane domains. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/
[1] G. Polia, G. Segë, Izoperimetricheskie neravenstva matematicheskoi fiziki, Fizmatgiz, M., 1962 | MR | Zbl
[2] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Adv. Publ. Program, Boston, 1980 | MR | Zbl
[3] G. Keady, A. McNabb, “The elastic torsion problem: Solutions in convex domains”, New Zealand J. Math., 22 (1993), 43–64 | MR | Zbl
[4] G. Polya, A. Weinstein, “On the tortional rigidity of multiply connected cross-sections”, Ann. of Math., 52:1 (1950), 154–163 | DOI | MR | Zbl
[5] F. G. Avkhadiev, R. G. Salahudinov, “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequalities Appl., 7:4 (2002), 593–601 | DOI | MR | Zbl
[6] F. G. Avkhadiev, “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl
[7] R. G. Salahudinov, “Isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequalities Appl., 6 (2001), 253–260 | DOI | MR | Zbl
[8] M.-Th. Kohler-Jobin, “Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques”, C. R. Acad. Sci. Paris, 284:3 (1977), 917–920 | MR | Zbl
[9] M.-Th. Kohler-Jobin, “Une méthode de comparaision isopérimétrique de fonctionneilles de domaines de la physique mathématique I, II”, Z. Angew. Math. Phys., 29 (1978), 757–766, 767–776 | DOI | MR | Zbl
[10] J. Hersch, “Isoperimetric monotonicity—some properties and conjectures (connection between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl
[11] L. E. Payne, M. E. Rayner, “An isoperimetric inequality for the first eigenfunction on the fixed membran problem”, Z. Angew. Math. Phys., 23 (1972), 13–15 | DOI | MR | Zbl
[12] M.-Th. Kohler-Jobin, “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl