Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $u(x,G)$ be the classical stress function of a finitely connected plane domain $G$. The isoperimetric properties of the $L^p$-norms of $u(x,G)$ are studied. Payne's inequality for simply connected domains is generalized to finitely connected domains. It is proved that the $L^p$-norms of the functions $u(x,G)$ and $u^{-1}(x,G)$ strictly decrease with respect to the parameter $p$, and a sharp bound for the rate of decrease of the $L^p$-norms of these functions in terms of the corresponding $L^p$-norms of the stress function for an annulus is obtained. A new integral inequality for the $L^p$-norms of $u(x,G)$, which is an analog of the inequality obtained by F. G. Avkhadiev and the author for the $L^p$-norm of conformal radii, is proved.
@article{MZM_2006_80_4_a13,
author = {R. G. Salakhudinov},
title = {Estimation of the $L_p$-norms of stress functions for finitely connected plane domains},
journal = {Matemati\v{c}eskie zametki},
pages = {601--612},
publisher = {mathdoc},
volume = {80},
number = {4},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/}
}
TY - JOUR AU - R. G. Salakhudinov TI - Estimation of the $L_p$-norms of stress functions for finitely connected plane domains JO - Matematičeskie zametki PY - 2006 SP - 601 EP - 612 VL - 80 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/ LA - ru ID - MZM_2006_80_4_a13 ER -
R. G. Salakhudinov. Estimation of the $L_p$-norms of stress functions for finitely connected plane domains. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/