Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(x,G)$ be the classical stress function of a finitely connected plane domain $G$. The isoperimetric properties of the $L^p$-norms of $u(x,G)$ are studied. Payne's inequality for simply connected domains is generalized to finitely connected domains. It is proved that the $L^p$-norms of the functions $u(x,G)$ and $u^{-1}(x,G)$ strictly decrease with respect to the parameter $p$, and a sharp bound for the rate of decrease of the $L^p$-norms of these functions in terms of the corresponding $L^p$-norms of the stress function for an annulus is obtained. A new integral inequality for the $L^p$-norms of $u(x,G)$, which is an analog of the inequality obtained by F. G. Avkhadiev and the author for the $L^p$-norm of conformal radii, is proved.
@article{MZM_2006_80_4_a13,
     author = {R. G. Salakhudinov},
     title = {Estimation of the $L_p$-norms of stress functions for finitely connected plane domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {601--612},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
JO  - Matematičeskie zametki
PY  - 2006
SP  - 601
EP  - 612
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/
LA  - ru
ID  - MZM_2006_80_4_a13
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
%J Matematičeskie zametki
%D 2006
%P 601-612
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/
%G ru
%F MZM_2006_80_4_a13
R. G. Salakhudinov. Estimation of the $L_p$-norms of stress functions for finitely connected plane domains. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/