Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $u(x,G)$ be the classical stress function of a finitely connected plane domain $G$. The isoperimetric properties of the $L^p$-norms of $u(x,G)$ are studied. Payne's inequality for simply connected domains is generalized to finitely connected domains. It is proved that the $L^p$-norms of the functions $u(x,G)$ and $u^{-1}(x,G)$ strictly decrease with respect to the parameter $p$, and a sharp bound for the rate of decrease of the $L^p$-norms of these functions in terms of the corresponding $L^p$-norms of the stress function for an annulus is obtained. A new integral inequality for the $L^p$-norms of $u(x,G)$, which is an analog of the inequality obtained by F. G. Avkhadiev and the author for the $L^p$-norm of conformal radii, is proved.
@article{MZM_2006_80_4_a13,
     author = {R. G. Salakhudinov},
     title = {Estimation of the $L_p$-norms of stress functions for finitely connected plane domains},
     journal = {Matemati\v{c}eskie zametki},
     pages = {601--612},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/}
}
TY  - JOUR
AU  - R. G. Salakhudinov
TI  - Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
JO  - Matematičeskie zametki
PY  - 2006
SP  - 601
EP  - 612
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/
LA  - ru
ID  - MZM_2006_80_4_a13
ER  - 
%0 Journal Article
%A R. G. Salakhudinov
%T Estimation of the $L_p$-norms of stress functions for finitely connected plane domains
%J Matematičeskie zametki
%D 2006
%P 601-612
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/
%G ru
%F MZM_2006_80_4_a13
R. G. Salakhudinov. Estimation of the $L_p$-norms of stress functions for finitely connected plane domains. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 601-612. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a13/

[1] G. Polia, G. Segë, Izoperimetricheskie neravenstva matematicheskoi fiziki, Fizmatgiz, M., 1962 | MR | Zbl

[2] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Adv. Publ. Program, Boston, 1980 | MR | Zbl

[3] G. Keady, A. McNabb, “The elastic torsion problem: Solutions in convex domains”, New Zealand J. Math., 22 (1993), 43–64 | MR | Zbl

[4] G. Polya, A. Weinstein, “On the tortional rigidity of multiply connected cross-sections”, Ann. of Math., 52:1 (1950), 154–163 | DOI | MR | Zbl

[5] F. G. Avkhadiev, R. G. Salahudinov, “Isoperimetric inequalities for conformal moments of plane domains”, J. Inequalities Appl., 7:4 (2002), 593–601 | DOI | MR | Zbl

[6] F. G. Avkhadiev, “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 189:12 (1998), 3–12 | MR | Zbl

[7] R. G. Salahudinov, “Isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequalities Appl., 6 (2001), 253–260 | DOI | MR | Zbl

[8] M.-Th. Kohler-Jobin, “Une propriété de monotonie isopérimétrique qui contient plusieurs théorèmes classiques”, C. R. Acad. Sci. Paris, 284:3 (1977), 917–920 | MR | Zbl

[9] M.-Th. Kohler-Jobin, “Une méthode de comparaision isopérimétrique de fonctionneilles de domaines de la physique mathématique I, II”, Z. Angew. Math. Phys., 29 (1978), 757–766, 767–776 | DOI | MR | Zbl

[10] J. Hersch, “Isoperimetric monotonicity—some properties and conjectures (connection between isoperimetric inequalities)”, SIAM Rev., 30:4 (1988), 551–577 | DOI | MR | Zbl

[11] L. E. Payne, M. E. Rayner, “An isoperimetric inequality for the first eigenfunction on the fixed membran problem”, Z. Angew. Math. Phys., 23 (1972), 13–15 | DOI | MR | Zbl

[12] M.-Th. Kohler-Jobin, “Isoperimetric monotonicity and isoperimetric inequalities of Payne–Rayner type for the first eigenfunction of the Helmholtz problem”, Z. Angew. Math. Phys., 32 (1981), 625–646 | DOI | MR | Zbl