Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images
Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 483-489.

Voir la notice de l'article provenant de la source Math-Net.Ru

We continue studying the class of weakly convex sets (in the sense of Vial). For points in a sufficiently small neighborhood of a closed weakly convex subset in Hilbert space, we prove that the metric projection on this set exists and is unique. In other words, we show that the closed weakly convex sets have a Chebyshev layer. We prove that the metric projection of a point on a weakly convex set satisfies the Lipschitz condition with respect to a point and the Hölder condition with exponent $1/2$ with respect to a set. We develop a method for constructing a continuous parametrization of a set-valued mapping with weakly convex images. We obtain an explicit estimate for the modulus of continuity of the parametrizing function.
@article{MZM_2006_80_4_a0,
     author = {M. V. Balashov and G. E. Ivanov},
     title = {Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--489},
     publisher = {mathdoc},
     volume = {80},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a0/}
}
TY  - JOUR
AU  - M. V. Balashov
AU  - G. E. Ivanov
TI  - Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images
JO  - Matematičeskie zametki
PY  - 2006
SP  - 483
EP  - 489
VL  - 80
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a0/
LA  - ru
ID  - MZM_2006_80_4_a0
ER  - 
%0 Journal Article
%A M. V. Balashov
%A G. E. Ivanov
%T Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images
%J Matematičeskie zametki
%D 2006
%P 483-489
%V 80
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a0/
%G ru
%F MZM_2006_80_4_a0
M. V. Balashov; G. E. Ivanov. Properties of the metric projection on weakly vial-convex sets and parametrization of set-valued mappings with weakly convex images. Matematičeskie zametki, Tome 80 (2006) no. 4, pp. 483-489. http://geodesic.mathdoc.fr/item/MZM_2006_80_4_a0/

[1] G. E. Ivanov, “Mnozhestva, slabo vypuklye po Vialyu i po Efimovu–Stechkinu”, Izv. RAN. Ser. matem., 69:6 (2005), 35–60 | MR | Zbl

[2] J. W. Daniel, “The continuity of metric projections as functions of the data”, J. Approximation Theory, 12 (1974), 234–239 | DOI | MR | Zbl

[3] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[4] A. D. Ioffe, “Representation of set-valued mappings – II. Application to differential inclusions”, SIAM J. Control Optim., 21 (1983), 641–651 | DOI | MR | Zbl

[5] J.-P. Aubin, A. Cellina, Differential Inclusions, Springer, 1984 | MR | Zbl

[6] A. Ornelas, “Parametrization of Caratheodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl

[7] A. LeDonne, M. V. Marchi, “Representation of Lipschitz compact convex valued mappings”, Rend. Acad. Naz. Lincei, 68 (1980), 278–280 | MR | Zbl