Free and Nonfree Voronoi Polyhedra
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 367-378.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Voronoi polyhedron of some point $v$ of a translation lattice is the closure of the set of points in space that are closer to $v$ than to any other lattice points. Voronoi polyhedra are a special case of parallelohedra, i.e., polyhedra whose parallel translates can fill the entire space without gaps and common interior points. The Minkowski sum of a parallelohedron with a segment is not always a parallelohedron. A parallelohedron $P$ is said to be free along a vector $e$ if the sum of $P$ with a segment of the line spanned by $e$ is a parallelohedron. We prove a theorem stating that if the Voronoi polyhedron $P_V(f)$ of a quadratic form $f$ is free along some vector, then the Voronoi polyhedron $P_V(g)$ of each form $g$ lying in the closure of the L-domain of $f$ is also free along some vector. For the dual root lattice $E_6^*$ and the infinite series of lattices $D_{2m}^+$, $m\geqslant 4$, we prove that their Voronoi polyhedra are nonfree in all directions.
Mots-clés : parallelohedron, L-domain, Gram matrix.
Keywords: Voronoi polyhedron, Delaunay polyhedron, Minkowski sum, quadratic form
@article{MZM_2006_80_3_a5,
     author = {V. P. Grishukhin},
     title = {Free and {Nonfree} {Voronoi} {Polyhedra}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {367--378},
     publisher = {mathdoc},
     volume = {80},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a5/}
}
TY  - JOUR
AU  - V. P. Grishukhin
TI  - Free and Nonfree Voronoi Polyhedra
JO  - Matematičeskie zametki
PY  - 2006
SP  - 367
EP  - 378
VL  - 80
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a5/
LA  - ru
ID  - MZM_2006_80_3_a5
ER  - 
%0 Journal Article
%A V. P. Grishukhin
%T Free and Nonfree Voronoi Polyhedra
%J Matematičeskie zametki
%D 2006
%P 367-378
%V 80
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a5/
%G ru
%F MZM_2006_80_3_a5
V. P. Grishukhin. Free and Nonfree Voronoi Polyhedra. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 367-378. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a5/

[1] B. A. Venkov, “O proektirovanii paralleloedrov”, Matem. sb., 49 (1959), 207–224 | Zbl

[2] S. S. Ryshkov, E. P. Baranovskii, $C$-tipy $n$-mernykh reshetok i pyatimernye primitivnye paralleloedry (s prilozheniem k teorii pokrytii), Tr. MIAN, 137, 1976 | MR | Zbl

[3] P. Engel, “Investigations of parallelohedra in $\mathbb R^d$”, Voronoi's Impact on Modern Science, 2, eds. P. Engel, H. Syta, Institute of Math., Kyiv, 1998, 22–60 | Zbl

[4] R. Erdahl, S. S. Ryshkov, “On lattice dicing”, European J. Combin., 15 (1994), 459–481 | DOI | MR | Zbl

[5] V. P. Grishukhin, “Paralleloedry nenulevoi tolschiny”, Matem. sb., 195:5 (2004), 59–78 | MR | Zbl

[6] E. P. Baranovskii, V. P. Grishukhin, “Non-rigidity degree of a lattice and rigid lattices”, European J. Combin., 22 (2001), 921–935 | DOI | MR | Zbl

[7] S. S. Ryshkov, E. P. Baranovskii, “Repartitioning complexes in $n$-dimensional lattices (with full description for $n\le 6$)”, Voronoi's Impact on Modern Science, 2, eds. P. Engel, H. Syta, Institute of Math., Kyiv, 1998, 115–124 | Zbl

[8] E. P. Baranovskii, V. P. Grishukhin, “Algoritm vychisleniya stepeni nezhestkosti L-razbieniya reshetki”, Vestn. Ivanovskogo gos. un-ta, 2000, no. 3, 116–122

[9] E. P. Baranovskii, “Zhestkost L-razbienii reshetok”, Problemy teoreticheskoi kibernetiki, Tezisy XII Mezhdunar. konf., M., 1999

[10] M. Deza, V. Grishukhin, “Rank 1 forms, closed zones and laminae”, J. Théor. Nombres Bordeaux, 14:1 (2002), 103–112 | MR | Zbl

[11] B. A. Venkov, “Ob odnom klasse evklidovykh mnogogrannikov”, Vestn. LGU, 1954, no. 2, 11–31 | MR

[12] E. P. Baranovskii, “Razbienie evklidovykh prostranstv na L-mnogogranniki nekotorykh sovershennykh reshetok”, Tr. MIAN, 196, 1991, 27–46 | MR | Zbl

[13] Dzh. Konvei, N. Sloen, Upakovki sharov, reshetki i gruppy, Mir, M., 1990 | MR | MR | Zbl

[14] M. Deza, V. Grishukhin, “Delaunay polytopes of cut lattices”, Linear Algebra Appl., 226–228 (1995), 667–685 | DOI | MR | Zbl