Extremal Properties of Certain Trigonometric Functions and Chebyshev Polynomials
Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 350-355
Voir la notice de l'article provenant de la source Math-Net.Ru
For a wide class of symmetric trigonometric polynomials, the minimal deviation property is established. As a corollary, the extremal property is proved for the components of the Chebyshev polynomial mappings corresponding to symmetric algebras $A_\alpha$.
Keywords:
Chebyshev and trigonometric polynomials, minimal deviation property, symmetric algebras, complex Lie algebra.
@article{MZM_2006_80_3_a3,
author = {I. V. Belyakov},
title = {Extremal {Properties} of {Certain} {Trigonometric} {Functions} and {Chebyshev} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {350--355},
publisher = {mathdoc},
volume = {80},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a3/}
}
I. V. Belyakov. Extremal Properties of Certain Trigonometric Functions and Chebyshev Polynomials. Matematičeskie zametki, Tome 80 (2006) no. 3, pp. 350-355. http://geodesic.mathdoc.fr/item/MZM_2006_80_3_a3/