An Infinite-Dimensional Generalization
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 231-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete characterization of the extremal subsets of Hilbert spaces, which is an infinite-dimensional generalization of the classical Jung theorem, is given. The behavior of the set of points near the Chebyshev sphere of such a subset with respect to the Kuratowski and Hausdorff measures of noncompactness is investigated.
Keywords: Jung theorem, extremal subset of a Hilbert space, Chebyshev sphere, Kuratowski and Hausdorff noncompactness measures.
Mots-clés : Jung constant
@article{MZM_2006_80_2_a8,
     author = {V. Nguyen-Khac and K. Nguyen-Van},
     title = {An {Infinite-Dimensional} {Generalization}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {231--239},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/}
}
TY  - JOUR
AU  - V. Nguyen-Khac
AU  - K. Nguyen-Van
TI  - An Infinite-Dimensional Generalization
JO  - Matematičeskie zametki
PY  - 2006
SP  - 231
EP  - 239
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/
LA  - ru
ID  - MZM_2006_80_2_a8
ER  - 
%0 Journal Article
%A V. Nguyen-Khac
%A K. Nguyen-Van
%T An Infinite-Dimensional Generalization
%J Matematičeskie zametki
%D 2006
%P 231-239
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/
%G ru
%F MZM_2006_80_2_a8
V. Nguyen-Khac; K. Nguyen-Van. An Infinite-Dimensional Generalization. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/

[1] W. L. Bynum, “Normal structure coefficients for Banach spaces”, Pacific J. Math., 86 (1980), 427–436 | MR | Zbl

[2] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl

[3] H. W. E. Jung, “Über die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 123 (1901), 241–257 | Zbl

[4] L. Dantser, B. Gryunbaum, V. Kli, Teorema Khelli, Mir, M., 1968

[5] N. A. Routledge, “A result in Hilbert space”, Quart. J. Math., Oxford, 3:9 (1952), 12–18 | DOI | MR | Zbl

[6] V. I. Berdyshev, “Svyaz mezhdu neravenstvom Dzheksona i odnoi geometricheskoi zadachei”, Matem. zametki, 3:3 (1968), 327–338 | Zbl

[7] J. Daneš, “On the radius of a set in a Hilbert space”, Comm. Math. Univ. Carolina, 25:2 (1984), 355–362 | MR | Zbl

[8] N. M. Gulevich, “Radius kompaktnogo mnozhestva v gilbertovom prostranstve”, Zapiski nauchnykh seminarov LOMI, 164, 1988, 157–158 | MR

[9] J. R. L. Webb, W. Zhao, “On connections between set and ball measures of non-compactness”, Bull. London Math. Soc., 22 (1990), 471–477 | DOI | MR | Zbl