Mots-clés : Jung constant
@article{MZM_2006_80_2_a8,
author = {V. Nguyen-Khac and K. Nguyen-Van},
title = {An {Infinite-Dimensional} {Generalization}},
journal = {Matemati\v{c}eskie zametki},
pages = {231--239},
year = {2006},
volume = {80},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/}
}
V. Nguyen-Khac; K. Nguyen-Van. An Infinite-Dimensional Generalization. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/
[1] W. L. Bynum, “Normal structure coefficients for Banach spaces”, Pacific J. Math., 86 (1980), 427–436 | MR | Zbl
[2] A. L. Garkavi, “O chebyshevskom tsentre i vypukloi obolochke mnozhestva”, UMN, 19:6 (1964), 139–145 | MR | Zbl
[3] H. W. E. Jung, “Über die kleinste Kugel, die eine räumliche Figur einschliesst”, J. Reine Angew. Math., 123 (1901), 241–257 | Zbl
[4] L. Dantser, B. Gryunbaum, V. Kli, Teorema Khelli, Mir, M., 1968
[5] N. A. Routledge, “A result in Hilbert space”, Quart. J. Math., Oxford, 3:9 (1952), 12–18 | DOI | MR | Zbl
[6] V. I. Berdyshev, “Svyaz mezhdu neravenstvom Dzheksona i odnoi geometricheskoi zadachei”, Matem. zametki, 3:3 (1968), 327–338 | Zbl
[7] J. Daneš, “On the radius of a set in a Hilbert space”, Comm. Math. Univ. Carolina, 25:2 (1984), 355–362 | MR | Zbl
[8] N. M. Gulevich, “Radius kompaktnogo mnozhestva v gilbertovom prostranstve”, Zapiski nauchnykh seminarov LOMI, 164, 1988, 157–158 | MR
[9] J. R. L. Webb, W. Zhao, “On connections between set and ball measures of non-compactness”, Bull. London Math. Soc., 22 (1990), 471–477 | DOI | MR | Zbl