An Infinite-Dimensional Generalization
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 231-239
Voir la notice de l'article provenant de la source Math-Net.Ru
A complete characterization of the extremal
subsets of Hilbert spaces,
which is an infinite-dimensional generalization
of the classical Jung theorem, is given.
The behavior of the set of points near
the Chebyshev sphere of such a subset with respect to
the Kuratowski and Hausdorff measures of noncompactness
is investigated.
Keywords:
Jung theorem, extremal subset of a Hilbert space, Chebyshev sphere, Kuratowski and Hausdorff noncompactness measures.
Mots-clés : Jung constant
Mots-clés : Jung constant
@article{MZM_2006_80_2_a8,
author = {V. Nguyen-Khac and K. Nguyen-Van},
title = {An {Infinite-Dimensional} {Generalization}},
journal = {Matemati\v{c}eskie zametki},
pages = {231--239},
publisher = {mathdoc},
volume = {80},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/}
}
V. Nguyen-Khac; K. Nguyen-Van. An Infinite-Dimensional Generalization. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 231-239. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a8/