Equality Conditions for the Singular Values of $3\times 3$ Matrices
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 187-192.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Gamma_a$ be an upper triangular $3\times 3$ matrix with diagonal entries equal to a complex scalar $a$. Necessary and sufficient conditions are found for two of the singular values of $\Gamma_a$ to be equal. These conditions are much simpler than the equality $\operatorname{discr}\varphi=\nobreak 0$, where the expression in the left-hand side is the discriminant of the characteristic polynomial $\varphi$ of the matrix $G_a=\Gamma_a^*\Gamma_a$. Understanding the behavior of singular values of $\Gamma_a$ is important in the problem of finding a matrix with a triple zero eigenvalue that is closest to a given normal matrix $A$.
Keywords: upper triangular matrix, singular value of a matrix, spectral distance, characteristic equation.
Mots-clés : normal matrix
@article{MZM_2006_80_2_a3,
     author = {Kh. D. Ikramov},
     title = {Equality {Conditions} for the {Singular} {Values} of $3\times 3$  {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {187--192},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a3/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - Equality Conditions for the Singular Values of $3\times 3$  Matrices
JO  - Matematičeskie zametki
PY  - 2006
SP  - 187
EP  - 192
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a3/
LA  - ru
ID  - MZM_2006_80_2_a3
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T Equality Conditions for the Singular Values of $3\times 3$  Matrices
%J Matematičeskie zametki
%D 2006
%P 187-192
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a3/
%G ru
%F MZM_2006_80_2_a3
Kh. D. Ikramov. Equality Conditions for the Singular Values of $3\times 3$  Matrices. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 187-192. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a3/

[1] A. N. Malyshev, “A formula for the $2$-norm distance from a matrix to the set of matrices with multiple eigenvalues”, Numer. Math., 83 (1999), 443–454 | DOI | MR | Zbl

[2] Kh. D. Ikramov, A. M. Nazari, “Ob odnom zamechatelnom sledstvii formuly Malysheva”, Dokl. RAN, 385:5 (2002), 599–600 | MR