On Farthest Points of Sets
Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a convex closed bounded set in a Banach space, we study the existence and uniqueness problem for a point of this set that is the farthest point from a given point in space. In terms of the existence and uniqueness of the farthest point, as well as the Lipschitzian dependence of this point on a point in space, we obtain necessary and sufficient conditions for the strong convexity of a set in several infinite-dimensional spaces, in particular, in a Hilbert space. A set representable as the intersection of closed balls of a fixed radius is called a strongly convex set. We show that the condition “for each point in space that is sufficiently far from a set, there exists a unique farthest point of the set” is a criterion for the strong convexity of a set in a finite-dimensional normed space, where the norm ball is a strongly convex set and a generating set.
Keywords: farthest point, existence and uniqueness problem, strong convexity, Hilbert space, reflexive Banach space, proximity function.
@article{MZM_2006_80_2_a0,
     author = {M. V. Balashov and G. E. Ivanov},
     title = {On {Farthest} {Points} of {Sets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {80},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a0/}
}
TY  - JOUR
AU  - M. V. Balashov
AU  - G. E. Ivanov
TI  - On Farthest Points of Sets
JO  - Matematičeskie zametki
PY  - 2006
SP  - 163
EP  - 170
VL  - 80
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a0/
LA  - ru
ID  - MZM_2006_80_2_a0
ER  - 
%0 Journal Article
%A M. V. Balashov
%A G. E. Ivanov
%T On Farthest Points of Sets
%J Matematičeskie zametki
%D 2006
%P 163-170
%V 80
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a0/
%G ru
%F MZM_2006_80_2_a0
M. V. Balashov; G. E. Ivanov. On Farthest Points of Sets. Matematičeskie zametki, Tome 80 (2006) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/MZM_2006_80_2_a0/

[1] E. S. Polovinkin, M. V. Balashov, Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[2] Dzh. Distel, Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980 | MR

[3] Zh. -P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR