Lemniscates and Inequalities for the Logarithmic Capacities of Continua
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 33-37
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that if $P(z)=z^n+\dotsb$ is a polynomial with connected lemniscate
$E(P)=\{z\colon |P(z)|\le 1\}$ and $m$ critical points, then, for any $n-m+1$ points on the lemniscate $E(P)$, there exists a continuum $\gamma\subset E(P)$ of logarithmic capacity
$\operatorname{cap}\gamma\le 2^{-1/n}$ which contains these points and all zeros and critical points of the polynomial. As corollaries, estimates for continua of minimum
capacity containing given points are obtained.
Keywords:
lemniscate of a polynomial, logarithmic capacity, continuum.
@article{MZM_2006_80_1_a4,
author = {V. N. Dubinin},
title = {Lemniscates and {Inequalities} for the {Logarithmic} {Capacities} of {Continua}},
journal = {Matemati\v{c}eskie zametki},
pages = {33--37},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a4/}
}
V. N. Dubinin. Lemniscates and Inequalities for the Logarithmic Capacities of Continua. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 33-37. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a4/