Lemniscates and Inequalities for the Logarithmic Capacities of Continua
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 33-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if $P(z)=z^n+\dotsb$ is a polynomial with connected lemniscate $E(P)=\{z\colon |P(z)|\le 1\}$ and $m$ critical points, then, for any $n-m+1$ points on the lemniscate $E(P)$, there exists a continuum $\gamma\subset E(P)$ of logarithmic capacity $\operatorname{cap}\gamma\le 2^{-1/n}$ which contains these points and all zeros and critical points of the polynomial. As corollaries, estimates for continua of minimum capacity containing given points are obtained.
Keywords: lemniscate of a polynomial, logarithmic capacity, continuum.
@article{MZM_2006_80_1_a4,
     author = {V. N. Dubinin},
     title = {Lemniscates and {Inequalities} for the {Logarithmic} {Capacities} of {Continua}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {33--37},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Lemniscates and Inequalities for the Logarithmic Capacities of Continua
JO  - Matematičeskie zametki
PY  - 2006
SP  - 33
EP  - 37
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a4/
LA  - ru
ID  - MZM_2006_80_1_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Lemniscates and Inequalities for the Logarithmic Capacities of Continua
%J Matematičeskie zametki
%D 2006
%P 33-37
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a4/
%G ru
%F MZM_2006_80_1_a4
V. N. Dubinin. Lemniscates and Inequalities for the Logarithmic Capacities of Continua. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 33-37. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a4/

[1] P. Borwein, T. Erdelyi, Polynomials and polynomial inequalities, Grad. Texts in Math., 161, Springer-Verlag, New York, 1995 | MR

[2] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, London Math. Soc. Monographs, New Series, 26, Clarendon Press, Oxford, 2002 | MR

[3] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[4] G. Polya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach Zusammenhängende Gebiete. I”, Sitzungsberichte Akad. Berlin, 1928 (1928), 228–232 | Zbl

[5] S. Stoilov, Teoriya funktsii kompleksnogo peremennogo, t. 1, Izd-vo IL, M., 1962

[6] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[7] G. V. Kuzmina, “Metody geometricheskoi teorii funktsii”, Algebra i analiz, 9:3 (1997), 41–103 ; 5, 1–50 | MR | MR