Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_80_1_a12, author = {V. \'E. Turchin}, title = {Calculating the {First} {Nontrivial} {1-Cocycle}}, journal = {Matemati\v{c}eskie zametki}, pages = {105--114}, publisher = {mathdoc}, volume = {80}, number = {1}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/} }
V. É. Turchin. Calculating the First Nontrivial 1-Cocycle. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/
[1] V. A. Vassiliev, “On combinatorial formulas for cohomology of spaces of knots”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl
[2] V. A. Vassiliev, “Cohomology of knot spaces”, Theory of Singularities and its Applications, Advances in Soviet Math., 1, ed. V. I. Arnold, AMS, Providence, RI, 1990, 23–69 | MR
[3] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl
[4] S. V. Chmutov, S. V. Duzhin, S. K. Lando, “Vassiliev knot invariants. I. Introduction”, Singularities and Bifurcations, Adv. in Sov. Math., 21, AMS, Providence, RI, 1994, 117–126 | MR
[5] M. Kontsevich, “Vassiliev's knot invariants”, Adv. in Sov. Math., 16, no. 2, AMS, Providence RI, 1993, 137–150 | MR
[6] V. A. Vassiliev, “Topology of two-connected graphs and homology of spaces of knots”, Differential and Symplectic Topology of Knots and Curves, AMS translations, Ser. 2, 190, ed. S. Tabachnikov, AMS, Providence RI, 1999, 253–286 | MR
[7] V. A. Vassiliev, “Homology of spaces of knots in any dimensions”, Philos. Transact. of the London Royal Society, 359:1784 (2001), 1343–1364 | MR | Zbl
[8] M. Polyak, O. Viro, “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notes, 11 (1994), 445–453 | DOI | MR | Zbl
[9] M. Goussarov, M. Polyak, O. Viro, “Finite type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl
[10] R. Budney, Little cubes and long knots, math.GT/0309427 | MR
[11] R. Budney, F. Cohen, On the homology of the space of knots, In preparation
[12] P. Gilmer, “A method for computing the Arf invariants for links”, Quantum Topology, Series on Knots and Everything, 3, eds. L. Kauffman and R. Baadhio, World Sci., Singapore, 1993, 174–181 | MR | Zbl
[13] L. H. Kauffman, On Knots, Ann. of Math. Stud., 115, Princeton University Press, 1987 | MR | Zbl
[14] J. Lannes, “Sur les invariants de Vassiliev de degré inférieur ou égal à 3”, Enseign. Math. (2), 39:3–4 (1993), 295–316 | MR | Zbl
[15] Ng. Ka Yi, “Groups of ribbon knots”, Topology, 37 (1998), 441–458 | DOI | MR | Zbl
[16] M. Polyak, O. Viro, “On the Casson knot invariant”, Journal of Knot Theory and Its Ramifications, 10:5 (2001), 711–738 ; math.GT/9903158v1 | DOI | MR | Zbl
[17] A. Hatcher, Topological Moduli Spaces of Knots, http://math.cornell.edu/h̃atcher