Calculating the First Nontrivial 1-Cocycle
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 105-114
Voir la notice de l'article provenant de la source Math-Net.Ru
For spaces of knots in $\mathbb{R}^3$, the Vassiliev theory
defines the so-called cocycles of finite order. The
zero-dimensional cocycles are the finite order invariants. The
first nontrivial cocycle of positive dimension in the space of
long knots is one-dimensional and is of order 3. We apply the
combinatorial formula given by Vassiliev in his paper [1] and
find the value
$\bmod\, 2$ of this cocycle on 1-cycles obtained by dragging knots one through another
or by rotating a knot around a given line.
Keywords:
long knot, Vassiliev invariant, finite order cocycle
Mots-clés : Casson's invariant.
Mots-clés : Casson's invariant.
@article{MZM_2006_80_1_a12,
author = {V. \'E. Turchin},
title = {Calculating the {First} {Nontrivial} {1-Cocycle}},
journal = {Matemati\v{c}eskie zametki},
pages = {105--114},
publisher = {mathdoc},
volume = {80},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/}
}
V. É. Turchin. Calculating the First Nontrivial 1-Cocycle. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/