Calculating the First Nontrivial 1-Cocycle
Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 105-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

For spaces of knots in $\mathbb{R}^3$, the Vassiliev theory defines the so-called cocycles of finite order. The zero-dimensional cocycles are the finite order invariants. The first nontrivial cocycle of positive dimension in the space of long knots is one-dimensional and is of order 3. We apply the combinatorial formula given by Vassiliev in his paper [1] and find the value $\bmod\, 2$ of this cocycle on 1-cycles obtained by dragging knots one through another or by rotating a knot around a given line.
Keywords: long knot, Vassiliev invariant, finite order cocycle
Mots-clés : Casson's invariant.
@article{MZM_2006_80_1_a12,
     author = {V. \'E. Turchin},
     title = {Calculating the {First} {Nontrivial} {1-Cocycle}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {105--114},
     publisher = {mathdoc},
     volume = {80},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/}
}
TY  - JOUR
AU  - V. É. Turchin
TI  - Calculating the First Nontrivial 1-Cocycle
JO  - Matematičeskie zametki
PY  - 2006
SP  - 105
EP  - 114
VL  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/
LA  - ru
ID  - MZM_2006_80_1_a12
ER  - 
%0 Journal Article
%A V. É. Turchin
%T Calculating the First Nontrivial 1-Cocycle
%J Matematičeskie zametki
%D 2006
%P 105-114
%V 80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/
%G ru
%F MZM_2006_80_1_a12
V. É. Turchin. Calculating the First Nontrivial 1-Cocycle. Matematičeskie zametki, Tome 80 (2006) no. 1, pp. 105-114. http://geodesic.mathdoc.fr/item/MZM_2006_80_1_a12/

[1] V. A. Vassiliev, “On combinatorial formulas for cohomology of spaces of knots”, Moscow Math. J., 1:1 (2001), 91–123 | MR | Zbl

[2] V. A. Vassiliev, “Cohomology of knot spaces”, Theory of Singularities and its Applications, Advances in Soviet Math., 1, ed. V. I. Arnold, AMS, Providence, RI, 1990, 23–69 | MR

[3] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34 (1995), 423–472 | DOI | MR | Zbl

[4] S. V. Chmutov, S. V. Duzhin, S. K. Lando, “Vassiliev knot invariants. I. Introduction”, Singularities and Bifurcations, Adv. in Sov. Math., 21, AMS, Providence, RI, 1994, 117–126 | MR

[5] M. Kontsevich, “Vassiliev's knot invariants”, Adv. in Sov. Math., 16, no. 2, AMS, Providence RI, 1993, 137–150 | MR

[6] V. A. Vassiliev, “Topology of two-connected graphs and homology of spaces of knots”, Differential and Symplectic Topology of Knots and Curves, AMS translations, Ser. 2, 190, ed. S. Tabachnikov, AMS, Providence RI, 1999, 253–286 | MR

[7] V. A. Vassiliev, “Homology of spaces of knots in any dimensions”, Philos. Transact. of the London Royal Society, 359:1784 (2001), 1343–1364 | MR | Zbl

[8] M. Polyak, O. Viro, “Gauss diagram formulas for Vassiliev invariants”, Internat. Math. Res. Notes, 11 (1994), 445–453 | DOI | MR | Zbl

[9] M. Goussarov, M. Polyak, O. Viro, “Finite type invariants of classical and virtual knots”, Topology, 39:5 (2000), 1045–1068 | DOI | MR | Zbl

[10] R. Budney, Little cubes and long knots, math.GT/0309427 | MR

[11] R. Budney, F. Cohen, On the homology of the space of knots, In preparation

[12] P. Gilmer, “A method for computing the Arf invariants for links”, Quantum Topology, Series on Knots and Everything, 3, eds. L. Kauffman and R. Baadhio, World Sci., Singapore, 1993, 174–181 | MR | Zbl

[13] L. H. Kauffman, On Knots, Ann. of Math. Stud., 115, Princeton University Press, 1987 | MR | Zbl

[14] J. Lannes, “Sur les invariants de Vassiliev de degré inférieur ou égal à 3”, Enseign. Math. (2), 39:3–4 (1993), 295–316 | MR | Zbl

[15] Ng. Ka Yi, “Groups of ribbon knots”, Topology, 37 (1998), 441–458 | DOI | MR | Zbl

[16] M. Polyak, O. Viro, “On the Casson knot invariant”, Journal of Knot Theory and Its Ramifications, 10:5 (2001), 711–738 ; math.GT/9903158v1 | DOI | MR | Zbl

[17] A. Hatcher, Topological Moduli Spaces of Knots, http://math.cornell.edu/h̃atcher