Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2006_79_6_a8, author = {A. M. Raigorodskii}, title = {On the {Borsuk} and {Erd\"os--Hadwiger} numbers}, journal = {Matemati\v{c}eskie zametki}, pages = {913--924}, publisher = {mathdoc}, volume = {79}, number = {6}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a8/} }
A. M. Raigorodskii. On the Borsuk and Erd\"os--Hadwiger numbers. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 913-924. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a8/
[1] Borsuk K., “Drei Sätze über die $n$-dimensionale Euklidische Sphäre”, Fundamenta Math., 20 (1993), 177–190
[2] Eggleston H. G., Convexity, Cambridge Univ. Press, Cambridge, 1958
[3] Hadwiger H., “Ein Überdeckungssatz für den Euklidischen Raum”, Portugaliae Math., 4 (1944), 140–144 | Zbl
[4] Rogers C. A., “Covering a sphere with spheres”, Mathematika, 10 (1963), 157–164 | MR | Zbl
[5] Schramm O., “Illuminating sets of constant width”, Mathematika, 35 (1988), 180–189 | MR | Zbl
[6] Bourgain J., Lindenstrauss J., “On covering a set in $\mathbb R^d$ by balls of the same diameter”, Lecture Notes in Math., 1469, Springer-Verlag, Berlin, 1991, 138–144
[7] Kahn J., Kalai G., “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc., 29:1 (1993), 60–62 | DOI | MR | Zbl
[8] Raigorodskii A. M., “Ob odnoi otsenke v probleme Borsuka”, UMN, 54:2 (1999), 185–186 | MR | Zbl
[9] Larman D. G., Rogers C. A., “The realization of distances within sets in Euclidean space”, Mathematika, 19 (1972), 1–24 | MR | Zbl
[10] Raiskii D. E., “Realizatsiya vsekh rasstoyanii pri razbienii prostranstva $\mathbb R^n$ na $n+1$ chast”, Matem. zametki, 7 (1970), 319–323 | MR
[11] Frankl P., Wilson R., “Intersection theorems with geometric consequences”, Combinatorica, 1 (1981), 357–368 | DOI | MR | Zbl
[12] Raigorodskii A. M., “O khromaticheskom chisle prostranstva”, UMN, 55:2 (2000), 147–148 | MR | Zbl
[13] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla metricheskikh prostranstv”, UMN, 56:1 (2001), 107–146 | MR | Zbl
[14] Székely L. A., “Erdös on unit distances and the Szemerédi–Trotter theorems”, Paul Erdös and his Mathematics, Bolyai Math. Soc. Stud., 11, Springer, 2002, 649–666 | MR | Zbl
[15] Boltyanskii V. G., Gokhberg I. Ts., Teoremy i zadachi kombinatornoi geometrii, Nauka, M., 1965 | Zbl
[16] Boltyanski V. G., Martini H., Soltan P. S., Excursions into combinatorial geometry, Universitext, Springer-Verlag, Berlin–Heidelberg, 1997 | MR | Zbl
[17] Klee V., Wagon S., Old and New Unsolved Problems in Plane Geometry and Number Theory, Math. Association of America, 1991 | MR
[18] Raigorodskii A. M., “Problema Erdesha–Khadvigera i khromaticheskie chisla konechnykh geometricheskikh grafov”, Dokl. RAN, 392:3 (2003), 313–317 | MR
[19] Raigorodskii A. M., “Problema Erdesha–Khadvigera i khromaticheskie chisla konechnykh geometricheskikh grafov”, Matem. sb., 196:1 (2005), 123–156 | MR | Zbl
[20] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967 | MR
[21] Kharari F., Teoriya grafov, Mir, M., 1973 | MR
[22] Alon N., Babai L., Suzuki H., “Multilinear polynomials and Frankl–Ray-Chaudhuri–Wilson type intersection theorems”, J. Comb. Theory. Ser. A, 58 (1991), 165–180 | DOI | MR | Zbl
[23] Babai L., Frankl P., Linear algebra methods in combinatorics, Part 1, Department of Computer Science, The University of Chicago, Preliminary version 2, September, 1992
[24] Raigorodskii A. M., “Zadachi Borsuka i Khadvigera i sistemy vektorov s zapretami na skalyarnye proizvedeniya”, UMN, 57:3 (2002), 159–160 | MR
[25] Raigorodskii A. M., The Borsuk Partition Problem, Lect. Note Ser. of the London Math. Soc., 2004 | Zbl