On the Borsuk and Erd\"os--Hadwiger numbers
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 913-924

Voir la notice de l'article provenant de la source Math-Net.Ru

Two classical problems of combinatorial geometry, the Borsuk problem about splitting sets into parts of smaller diameter and the Erdös–Hadwiger problem about coloring Euclidean space, are studied. New asymptotic estimates are obtained for the quantities $f(d)$ (the minimal number of parts of smaller diameter into which any bounded set in $\mathbb R^d$ can be decomposed) and $\chi(\mathbb R^d)$ (the minimal number of colors required to color all points $\mathbb R^d$ so that any points at distance 1 from each other have different colors), which are the main objects of study in these problems.
@article{MZM_2006_79_6_a8,
     author = {A. M. Raigorodskii},
     title = {On the {Borsuk} and {Erd\"os--Hadwiger} numbers},
     journal = {Matemati\v{c}eskie zametki},
     pages = {913--924},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a8/}
}
TY  - JOUR
AU  - A. M. Raigorodskii
TI  - On the Borsuk and Erd\"os--Hadwiger numbers
JO  - Matematičeskie zametki
PY  - 2006
SP  - 913
EP  - 924
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a8/
LA  - ru
ID  - MZM_2006_79_6_a8
ER  - 
%0 Journal Article
%A A. M. Raigorodskii
%T On the Borsuk and Erd\"os--Hadwiger numbers
%J Matematičeskie zametki
%D 2006
%P 913-924
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a8/
%G ru
%F MZM_2006_79_6_a8
A. M. Raigorodskii. On the Borsuk and Erd\"os--Hadwiger numbers. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 913-924. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a8/