Continuation of separately analytic functions defined on part of a~domain boundary
Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 931-940.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $D\subset\mathbb C^n$ is a domain with smooth boundary $\partial D$, $E\subset\partial D$ is a boundary subset of positive Lebesgue measure $\operatorname{mes}(E)>0$, and $F\subset G$ is a nonpluripolar compact set in a strongly pseudoconvex domain $G\subset\mathbb C^m$. We prove that, under some additional conditions, each function separately analytic on the set $X=(D\times F)\cup(E\times G)$ can be holomorphically continued into the domain $\widehat X=\{(z,w)\in D\times G:\omega_{\textup{in}}^*(z,E,D)+\omega^*(w,F,G)1\}$, where $\omega^*$ is the $P$-measure and $\omega^*_{\textup{in}}$ is the inner $P$-measure.
@article{MZM_2006_79_6_a10,
     author = {A. S. Sadullaev and S. A. Imomkulov},
     title = {Continuation of separately analytic functions defined on part of a~domain boundary},
     journal = {Matemati\v{c}eskie zametki},
     pages = {931--940},
     publisher = {mathdoc},
     volume = {79},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a10/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - S. A. Imomkulov
TI  - Continuation of separately analytic functions defined on part of a~domain boundary
JO  - Matematičeskie zametki
PY  - 2006
SP  - 931
EP  - 940
VL  - 79
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a10/
LA  - ru
ID  - MZM_2006_79_6_a10
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A S. A. Imomkulov
%T Continuation of separately analytic functions defined on part of a~domain boundary
%J Matematičeskie zametki
%D 2006
%P 931-940
%V 79
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a10/
%G ru
%F MZM_2006_79_6_a10
A. S. Sadullaev; S. A. Imomkulov. Continuation of separately analytic functions defined on part of a~domain boundary. Matematičeskie zametki, Tome 79 (2006) no. 6, pp. 931-940. http://geodesic.mathdoc.fr/item/MZM_2006_79_6_a10/

[1] Hartogs F., “Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben”, Math. Ann., 62 (1906), 1–88 | DOI | MR

[2] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1985

[3] Hukuhara M., L‘extensions du théorème d’Osgood et de Hartogs, Kansu-hoteisiki ogobi Oyo-Kaiseki, 48, 1930

[4] Siciak J., “Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of $\mathbb C^n$”, Ann. Pol. Math., 22:1 (1966), 145–171 | MR

[5] Sadullaev A., “Plyurisubgarmonicheskie funktsii”, Itogi nauki i tekhniki. Sovrem. problemy matem. Fundament. napravleniya, 8, VINITI, M., 1985, 65–113 | MR

[6] Nguyen Thanh Van, Zeriahi A., “Une extension du théorème de Hartogs sur les fonctions séparément analytiques”, Analyse Complexe Multivariables, Recents Developments, ed. A. Meril, Editel, Rene, 1991, 183–194 | MR

[7] Sadullaev A. S., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Matem. sb., 119 (161):1 (1982), 96–118 | Zbl

[8] Sadullaev A. S., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[9] Bedford E., Taylor B. A., “A new capacity for plurisubharmonic functions”, Acta. Math., 149 (1982), 1–40 | DOI | Zbl

[10] Gonchar A. A., “On analytic continuation from the “edge of the wedge””, Ann. Acad. Sci. Fin. Ser. A I Math., 10 (1985), 221–225 | MR | Zbl

[11] Gonchar A. A., “K teoreme N. N. Bogolyubova “ostrie klina””, Tr. MIAN, 228, Nauka, M., 2000, 24–31 | MR | Zbl

[12] Zakharyuta V. P., “Ekstremalnye plyurisubgarmonicheskie funktsii, gilbertovy shkaly i izomorfizmy prostranstv analiticheskikh funktsii mnogikh peremennykh. I; II”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 1974, no. 19, 133–157 | Zbl

[13] Mityagin B. S., “Approksimativnaya razmernost i bazisy v yadernykh prostranstvakh”, UMN, 16:4 (1961), 63–132 | MR | Zbl