Approximations by convolutions and antiderivatives
Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 756-766.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $g$ be a given function in $L^1=L^1(0,1)$, and let $B$ be one of the spaces $L^p(0,1)$, $1\le p\infty$, or $C_0[0,1]$. We prove that the set of all convolutions $f*g$, $f\in B$, is dense in $B$ if and only if $g$ is nontrivial in an arbitrary right neighborhood of zero. Under an additional restriction on $g$, we prove the equivalence in $B$ of the systems $f_n*g$ and $If_n$, where $f_n\in L^1$, $n\in\mathbb N$, and $If=f*1$ is the antiderivative of $f$. As a consequence, we obtain criteria for the completeness and basis property in $B$ of subsystems of antiderivatives of $g$.
@article{MZM_2006_79_5_a11,
     author = {A. M. Sedletskii},
     title = {Approximations by convolutions and antiderivatives},
     journal = {Matemati\v{c}eskie zametki},
     pages = {756--766},
     publisher = {mathdoc},
     volume = {79},
     number = {5},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a11/}
}
TY  - JOUR
AU  - A. M. Sedletskii
TI  - Approximations by convolutions and antiderivatives
JO  - Matematičeskie zametki
PY  - 2006
SP  - 756
EP  - 766
VL  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a11/
LA  - ru
ID  - MZM_2006_79_5_a11
ER  - 
%0 Journal Article
%A A. M. Sedletskii
%T Approximations by convolutions and antiderivatives
%J Matematičeskie zametki
%D 2006
%P 756-766
%V 79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a11/
%G ru
%F MZM_2006_79_5_a11
A. M. Sedletskii. Approximations by convolutions and antiderivatives. Matematičeskie zametki, Tome 79 (2006) no. 5, pp. 756-766. http://geodesic.mathdoc.fr/item/MZM_2006_79_5_a11/

[1] Hewitt E., Ross K., Abstract harmonic analysis, V. I, Springer-Verlag, Berlin, 1963 | Zbl

[2] Foiaş C., “Approximation des operateurs de J. Mikusinski par des fonctions continues”, Stud. Math., 21 (1961), 73–74 | MR | Zbl

[3] Kierat W., Skórnik K., “A remark of the Foiaş theorem on convolution”, Bull. Polish Acad. Sci. Math., 34:1–2 (1986), 15–17 | MR | Zbl

[4] Skórnik K., “On the Foiaş theorem on convolution”, Complex Analysis and Applications' 87, Sofia, 1989, 460–464 | MR

[5] Leonteva L. A., “Ob approksimatsii nepreryvnykh funktsii lineinymi kombinatsiyami posledovatelnykh pervoobraznykh”, Vestnik Mosk. un-ta. Ser. 1, Matem., mekh., 1967, no. 2, 20–29 | MR

[6] Borodin P. A., “O polnote sistem posledovatelnykh pervoobraznykh i o nepolnykh sistemakh”, Matem. zametki, 57:1 (1995), 118–120 | MR

[7] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[8] Sedletskii A. M., “Analiticheskie preobrazovaniya Fure i eksponentsialnye approksimatsii, II”, Sovremennaya matem. Fundament. napravleniya, 6 (2003), 3–162 | MR

[9] Gurarii V. I., Matsaev V. I., “Lakunarnye stepennye posledovatelnosti v prostranstvakh $C$ i $L^p$”, Izv. AN SSSR. Ser. matem., 30:1 (1966), 3–14 | MR | Zbl

[10] Boas R. P., Entire functions, Academic Press, N.-Y., 1954 | Zbl

[11] Kusis P., Vvedenie v teoriyu prostranstv $H^p$, Nauka, M., 1984 | MR | Zbl

[12] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR