On periodic solutions of ordinary differential equations with discontinuous right-hand side
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 560-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version of the method of translation along trajectories, which does not require the uniqueness of the solution of the Cauchy problem, is applied to the proof of the existence theorem for vector-valued periodic solutions of ordinary differential equations of first and second order. This result is applicable to equations and differential inclusions with discontinuous right-hand side. Several applications of the theorems proved in this paper are considered in cases which are not covered by the classical theory of ordinary differential equations with continuous right-hand side and equations with right-hand side satisfying the Carathéodory conditions.
@article{MZM_2006_79_4_a6,
     author = {A. V. Zuev},
     title = {On periodic solutions of ordinary differential equations with discontinuous right-hand side},
     journal = {Matemati\v{c}eskie zametki},
     pages = {560--570},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a6/}
}
TY  - JOUR
AU  - A. V. Zuev
TI  - On periodic solutions of ordinary differential equations with discontinuous right-hand side
JO  - Matematičeskie zametki
PY  - 2006
SP  - 560
EP  - 570
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a6/
LA  - ru
ID  - MZM_2006_79_4_a6
ER  - 
%0 Journal Article
%A A. V. Zuev
%T On periodic solutions of ordinary differential equations with discontinuous right-hand side
%J Matematičeskie zametki
%D 2006
%P 560-570
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a6/
%G ru
%F MZM_2006_79_4_a6
A. V. Zuev. On periodic solutions of ordinary differential equations with discontinuous right-hand side. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 560-570. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a6/

[1] Filippov V. V., “Chto luchshe v teorii kraevykh zadach dlya obyknovennykh differentsialnykh uravnenii, metod Lere–Shaudera ili sdvig vdol traektorii?”, Differents. uravneniya, 37:8 (2001), 1049–1061 | MR | Zbl

[2] Filippov V. V., “O gomologicheskikh svoistvakh mnozhestv reshenii obyknovennykh differentsialnykh uravnenii”, Matem. sb., 188:6 (1997), 139–160 | MR | Zbl

[3] Filippov V. V., “O teoreme Aronshaina”, Differents. uravneniya, 33:1 (1997), 75–79 | MR | Zbl

[4] Filippov V. V., “O suschestvovanii periodicheskikh reshenii”, Matem. zametki, 61:5 (1997), 769–784 | MR | Zbl

[5] Filippov V. V., Prostranstva reshenii obyknovennykh differentsialnykh uravnenii, Izd-vo MGU, M., 1993 | MR | Zbl

[6] Filippov V. V., Basic Topological Structures of Ordinary Differential Equations, Kluwer, Dordrecht, 1998 | MR | Zbl

[7] Saks S., Teoriya integrala, IL, M., 1949

[8] Granas A., Guenther R. B., Lee J. W., “Some general existence principles in the Carathéodory theory of nonlinear differential systems”, J. Math. Pures Appl., 70:2 (1991), 153–196 | MR | Zbl

[9] Filippov V. V., “O teorii zadachi Koshi dlya obyknovennogo differentsialnogo uravneniya s razryvnoi pravoi chastyu”, Matem. sb., 185:11 (1994), 95–118

[10] Filippov V. V., “Zamechanie o nepreryvnosti zavisimosti reshenii differentsialnogo vklyucheniya $y'\in F(t,y)$ ot pravoi chasti”, Vestn. MGU. Ser. 1. Matem., mekh., 1995, no. 3, 16–21 | MR | Zbl

[11] Zeifert G., Trelfall V., Topologiya, GONTI, M.–L., 1937