Attractors of dissipative hyperbolic equations with singularly oscillating external forces
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 522-545.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a uniform attractor $\mathscr A^\varepsilon$ for a dissipative wave equation in a bounded domain $\Omega\Subset\mathbb R^n$ under the assumption that the external force singularly oscillates in time; more precisely, it is of the form $g_0(x,t)+\varepsilon^{-\alpha}g_1(x,t/\varepsilon)$, $x\in\Omega$, $t\in\mathbb R$, where $\alpha>0$, $0\varepsilon\leqslant1$. In $E=H_0^1\times L_2$, this equation has an absorbing set $B^\varepsilon$ estimated as $\|B^\varepsilon\|_E\leqslant C_1+C_2\varepsilon^{-\alpha}$ and, therefore, can increase without bound in the norm of $E$ as $\varepsilon\to0+$. Under certain additional constraints on the function $g_1(x,z)$, $x\in\Omega$, $z\in\mathbb R$, we prove that, for $0\alpha\leqslant\alpha_0$, the global attractors $\mathscr A^\varepsilon$ of such an equation are bounded in $E$, i.e., $\|\mathscr A^\varepsilon\|_E\leqslant C_3$, $0\varepsilon\leqslant1$. Along with the original equation, we consider a “limiting” wave equation with external force $g_0(x,t)$ that also has a global attractor $\mathscr A^0$. For the case in which $g_0(x,t)=g_0(x)$ and the global attractor $\mathscr A^0$ of the limiting equation is exponential, it is established that, for $0\alpha\leqslant\alpha_0$, the Hausdorff distance satisfies the estimate $\operatorname{dist}_E(\mathscr A^\varepsilon,\mathscr A^0)\leqslant C\varepsilon^{\eta(\alpha)}$, where $\eta(\alpha)>0$. For $\eta(\alpha)$ and $\alpha_0$, explicit formulas are given. We also study the nonautonomous case in which $g_0=g_0(x,t)$. It is assumed that sufficient conditions are satisfied for which the “limiting” nonautonomous equation has an exponential global attractor. In this case, we obtain upper bounds for the Hausdorff distance of the attractors $\mathscr A^\varepsilon$ from $\mathscr A^0$, similar to those given above.
@article{MZM_2006_79_4_a3,
     author = {M. I. Vishik and V. V. Chepyzhov},
     title = {Attractors of dissipative hyperbolic equations with singularly oscillating external forces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {522--545},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a3/}
}
TY  - JOUR
AU  - M. I. Vishik
AU  - V. V. Chepyzhov
TI  - Attractors of dissipative hyperbolic equations with singularly oscillating external forces
JO  - Matematičeskie zametki
PY  - 2006
SP  - 522
EP  - 545
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a3/
LA  - ru
ID  - MZM_2006_79_4_a3
ER  - 
%0 Journal Article
%A M. I. Vishik
%A V. V. Chepyzhov
%T Attractors of dissipative hyperbolic equations with singularly oscillating external forces
%J Matematičeskie zametki
%D 2006
%P 522-545
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a3/
%G ru
%F MZM_2006_79_4_a3
M. I. Vishik; V. V. Chepyzhov. Attractors of dissipative hyperbolic equations with singularly oscillating external forces. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 522-545. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a3/

[1] Chepyzhov V. V., Vishik M. I., Wendland W. L., “On non-autonomous sine-Gordon type equations with a simple global attractor and some averaging”, Discr. Cont. Dynamic Systems, 12:1 (2005), 27–38 | MR | Zbl

[2] Hale J. K., Verduyn Lunel S. M., “Averaging in infinite dimensions”, J. Integral Equations Appl., 2:4 (1990), 463–494 | DOI | Zbl

[3] Ilin A. A., “Usrednenie dissipativnykh dinamicheskikh sistem s bystro ostsilliruyuschimi pravymi chastyami”, Matem. sb., 187:5 (1996), 15–58 | MR

[4] Vishik M. I., Chepyzhov V. V., “Usrednenie traektornykh attraktorov evolyutsionnykh uravnenii s bystro ostsilliruyuschimi koeffitsientami”, Matem. sb., 192:1 (2001), 13–50 | MR | Zbl

[5] Chepyzhov V. V., Vishik M. I., “Non-autonomous 2D Navier–Stokes system with a simple global attractor and some averaging problems”, Electr. J. ESAIM: COCV, 8 (2002), 467–487 | DOI | MR | Zbl

[6] Vishik M. I., Fidler B., “Kolichestvennoe usrednenie globalnykh attraktorov giperbolicheskikh volnovykh uravnenii s bystro ostsilliruyuschimi koeffitsientami”, UMN, 57:4 (2002), 75–94 | MR | Zbl

[7] Efendiev M., Zelik S., “Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenization”, Ann. Inst. Poincaré, 19:6 (2002), 961–989 | MR | Zbl

[8] Chepyzhov V. V., Goritsky A. Yu., Vishik M. I., “Integral manifolds and attractors with exponential rate for nonautonomous hyperbolic equations with dissipation”, Russ. J. Math. Phys., 2005, no. 1, 17–39 | MR | Zbl

[9] Vishik M. I., Chepyzhov V. V., “Approksimatsiya traektorii, lezhaschikh na globalnom attraktore giperbolicheskogo uravneniya s bystro ostsilliruyuschei po vremeni vneshnei siloi”, Matem. sb., 194:9 (2003), 3–30 | MR | Zbl

[10] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[11] Temam R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Appl. Math. Sci., 68, Springer-Verlag, New York, 1997 | MR | Zbl

[12] Hale J. K., Asymptotic Behaviour of Dissipative Systems, Math. Survey Monographs, 25, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[13] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl

[14] Chepyzhov V. V., Vishik M. I., Attractors for Equations of Mathematical Physics, Amer. Math. Soc. Colloquium Publ., Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[15] Raugel G., “Global attractors in partial differential equations”, Handbook of Dynamical Systems, Vol. 2, ed. B. Fiedler, North-Holland, Amsterdam, 2002, 885–982 | MR

[16] Haraux A., “Two remarks on dissipative hyperbolic problems”, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar No 7, Research Notes in Math., 112, eds. H. Brezis, J. L. Lions, Pitman, Boston, 1985, 161–179 | MR

[17] Ball J. M., “Global attractors for damped semilinear wave equations”, Discr. Cont. Dynamic Systems, 10:1–2 (2004), 31–62 | MR

[18] Bogolyubov N. N., Mitropolskii Ya. A., Asimptoticheskie metody v teorii nelineinykh ostsillyatsii, Fizmatgiz, M., 1963

[19] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd. MGU, M., 1978 | MR | Zbl

[20] Kassels Dzh. V. S., Vvedenie v teoriyu diofantovykh priblizhenii, IL, M., 1961

[21] Fiedler B., Vishik M. I., Quantative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms, Preprint No. A-18-2000, Free Univ. Berlin, Berlin, 2000 | MR