Integro-local theorems for sums of independent random vectors in the series scheme
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 505-521

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S(n)=\xi(1)+\dots+\xi(n)$ be a sum of independent random vectors $\xi(i)=\xi_{(n)}(i)$ with general distribution depending on a parameter $n$. We find sufficient conditions for the uniform version of the integro-local Stone theorem to hold for the asymptotics of the probability $\mathsf P(S(n)\in\Delta[x))$, where $\Delta[x)$ is a cube with edge $\Delta$ and vertex at a point $x$.
@article{MZM_2006_79_4_a2,
     author = {A. A. Borovkov and A. A. Mogul'skii},
     title = {Integro-local theorems for sums of independent random vectors in the series scheme},
     journal = {Matemati\v{c}eskie zametki},
     pages = {505--521},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skii
TI  - Integro-local theorems for sums of independent random vectors in the series scheme
JO  - Matematičeskie zametki
PY  - 2006
SP  - 505
EP  - 521
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/
LA  - ru
ID  - MZM_2006_79_4_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skii
%T Integro-local theorems for sums of independent random vectors in the series scheme
%J Matematičeskie zametki
%D 2006
%P 505-521
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/
%G ru
%F MZM_2006_79_4_a2
A. A. Borovkov; A. A. Mogul'skii. Integro-local theorems for sums of independent random vectors in the series scheme. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 505-521. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/