Integro-local theorems for sums of independent random vectors in the series scheme
Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 505-521.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S(n)=\xi(1)+\dots+\xi(n)$ be a sum of independent random vectors $\xi(i)=\xi_{(n)}(i)$ with general distribution depending on a parameter $n$. We find sufficient conditions for the uniform version of the integro-local Stone theorem to hold for the asymptotics of the probability $\mathsf P(S(n)\in\Delta[x))$, where $\Delta[x)$ is a cube with edge $\Delta$ and vertex at a point $x$.
@article{MZM_2006_79_4_a2,
     author = {A. A. Borovkov and A. A. Mogul'skii},
     title = {Integro-local theorems for sums of independent random vectors in the series scheme},
     journal = {Matemati\v{c}eskie zametki},
     pages = {505--521},
     publisher = {mathdoc},
     volume = {79},
     number = {4},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/}
}
TY  - JOUR
AU  - A. A. Borovkov
AU  - A. A. Mogul'skii
TI  - Integro-local theorems for sums of independent random vectors in the series scheme
JO  - Matematičeskie zametki
PY  - 2006
SP  - 505
EP  - 521
VL  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/
LA  - ru
ID  - MZM_2006_79_4_a2
ER  - 
%0 Journal Article
%A A. A. Borovkov
%A A. A. Mogul'skii
%T Integro-local theorems for sums of independent random vectors in the series scheme
%J Matematičeskie zametki
%D 2006
%P 505-521
%V 79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/
%G ru
%F MZM_2006_79_4_a2
A. A. Borovkov; A. A. Mogul'skii. Integro-local theorems for sums of independent random vectors in the series scheme. Matematičeskie zametki, Tome 79 (2006) no. 4, pp. 505-521. http://geodesic.mathdoc.fr/item/MZM_2006_79_4_a2/

[1] Gnedenko B. V., “On a local limit theorem for identically disrtibuted independent summands”, Wiss. Z. Humbold-Univ. Berlin. Math.-Nat. Reihe, 3 (1954), 287–293 | MR | Zbl

[2] Gnedenko B. V., Kolmogorov A. N., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949

[3] Rvacheva E. L., “On domains of attraction of multi-dimensional distributions”, Gos. Univ. Uchen. Zap. Ser. Meh-Mat., 1958, 5–44

[4] Shepp L. A., “A local limit theorem”, Ann. Math. Statist., 35 (1964), 419–423 | DOI | MR | Zbl

[5] Stone C. J., “Local limit theorems for asymptotically stable distributions”, Notices Amer. Math. Soc., 11 (1964), 465

[6] Stone C., “On local and ratio limit theorems”, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Part 2, V. 2, Univ. of California Press, Los Angeles, CA, 1966, 217–224

[7] Borovkov A. A., Mogulskii A. A., “Integro-lokalnye predelnye teoremy dlya summ sluchainykh vektorov, vklyuchayuschie bolshie ukloneniya. I, II”, Teor. veroyatn. i ee primen., 43:1 (1998), 3–17 ; 45:1 (2000), 5–29 | Zbl | MR | Zbl

[8] Bkhattachariya R. N., Ranga Rao R., Approksimatsiya normalnym raspredeleniem i asimptoticheskie razlozheniya, Nauka, M., 1982 | MR

[9] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[10] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. II, Mir, M., 1967

[11] Borovkov A. A., Teoriya veroyatnostei, 3-e izd., pererab. i dop., Editorial URSS, M. ; Изд-во ИМ СО РАН, Новосибирск, 1999 | Zbl