Combinational properties of sets of residues modulo a prime and the Erd\H os--Graham problem
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 384-395
Voir la notice de l'article provenant de la source Math-Net.Ru
Consider an arbitrary $\varepsilon>0$ and a sufficiently large prime $p>2$. It is proved that, for any integer $a$, there exist pairwise distinct integers $x_1,x_2,\dots,x_N$, where $N=8([1/\varepsilon+1/2]+1)^2$ such that $1\le x_i\le p^\varepsilon$, $i=1,\dots,N$, and
$$
a\equiv x_1^{-1}+\dotsb+x_N^{-1}\pmod p,
$$
where $x_i^{-1}$ is the least positive integer satisfying $x_i^{-1}x_i\equiv1\pmod p$. This improves a result of Sparlinski.
@article{MZM_2006_79_3_a5,
author = {A. A. Glibichuk},
title = {Combinational properties of sets of residues modulo a prime and the {Erd\H} {os--Graham} problem},
journal = {Matemati\v{c}eskie zametki},
pages = {384--395},
publisher = {mathdoc},
volume = {79},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a5/}
}
TY - JOUR AU - A. A. Glibichuk TI - Combinational properties of sets of residues modulo a prime and the Erd\H os--Graham problem JO - Matematičeskie zametki PY - 2006 SP - 384 EP - 395 VL - 79 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a5/ LA - ru ID - MZM_2006_79_3_a5 ER -
A. A. Glibichuk. Combinational properties of sets of residues modulo a prime and the Erd\H os--Graham problem. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 384-395. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a5/