Invariant manifolds of the Hoff equation
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 444-449

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hoff equation $(\lambda+\Delta)u_t=-\alpha u-\beta u^3$ models the buckling of a T-shaped beam, where $\lambda$, $\alpha$, and $\beta\in\mathbb R_+$ are the parameters of the model. The existence of a finite-dimensional local invariant manifold is established in the neighborhood of zero.
@article{MZM_2006_79_3_a10,
     author = {G. A. Sviridyuk and O. G. Kitaeva},
     title = {Invariant manifolds of the {Hoff} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {444--449},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - O. G. Kitaeva
TI  - Invariant manifolds of the Hoff equation
JO  - Matematičeskie zametki
PY  - 2006
SP  - 444
EP  - 449
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/
LA  - ru
ID  - MZM_2006_79_3_a10
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A O. G. Kitaeva
%T Invariant manifolds of the Hoff equation
%J Matematičeskie zametki
%D 2006
%P 444-449
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/
%G ru
%F MZM_2006_79_3_a10
G. A. Sviridyuk; O. G. Kitaeva. Invariant manifolds of the Hoff equation. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 444-449. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/