Invariant manifolds of the Hoff equation
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 444-449
Voir la notice de l'article provenant de la source Math-Net.Ru
The Hoff equation $(\lambda+\Delta)u_t=-\alpha u-\beta u^3$ models the buckling of a T-shaped beam, where $\lambda$, $\alpha$, and $\beta\in\mathbb R_+$ are the parameters of the model. The existence of a finite-dimensional local invariant manifold is established in the neighborhood of zero.
@article{MZM_2006_79_3_a10,
author = {G. A. Sviridyuk and O. G. Kitaeva},
title = {Invariant manifolds of the {Hoff} equation},
journal = {Matemati\v{c}eskie zametki},
pages = {444--449},
publisher = {mathdoc},
volume = {79},
number = {3},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/}
}
G. A. Sviridyuk; O. G. Kitaeva. Invariant manifolds of the Hoff equation. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 444-449. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/