Invariant manifolds of the Hoff equation
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 444-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hoff equation $(\lambda+\Delta)u_t=-\alpha u-\beta u^3$ models the buckling of a T-shaped beam, where $\lambda$, $\alpha$, and $\beta\in\mathbb R_+$ are the parameters of the model. The existence of a finite-dimensional local invariant manifold is established in the neighborhood of zero.
@article{MZM_2006_79_3_a10,
     author = {G. A. Sviridyuk and O. G. Kitaeva},
     title = {Invariant manifolds of the {Hoff} equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {444--449},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - O. G. Kitaeva
TI  - Invariant manifolds of the Hoff equation
JO  - Matematičeskie zametki
PY  - 2006
SP  - 444
EP  - 449
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/
LA  - ru
ID  - MZM_2006_79_3_a10
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A O. G. Kitaeva
%T Invariant manifolds of the Hoff equation
%J Matematičeskie zametki
%D 2006
%P 444-449
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/
%G ru
%F MZM_2006_79_3_a10
G. A. Sviridyuk; O. G. Kitaeva. Invariant manifolds of the Hoff equation. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 444-449. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a10/

[1] Volmir A. S., Ustoichivost deformiruemykh sistem, Nauka, M., 1967

[2] Sidorov N. A., Romanova O. A., “O primenenii nekotorykh rezultatov teorii vetvleniya pri reshenii differentsialnykh uravnenii”, Differents. uravneniya, 19:9 (1983), 1526–1526 | Zbl

[3] Sviridyuk G. A., “Kvazistatsionarnye traektorii polulineinykh dinamicheskikh uravnenii tipa Soboleva”, Izv. RAN. Ser. matem., 57:3 (1993), 192–202

[4] Sviridyuk G. A., Kazak V. O., “Fazovoe prostranstvo nachalno-kraevoi zadachi dlya uravneniya Khoffa”, Matem. zametki, 71:2 (2002), 292–297 | Zbl

[5] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985 | MR

[6] Sviridyuk G. A., Sukacheva E. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | MR | Zbl

[7] Sviridyuk G. A., “K obschei teorii polugrupp operatorov”, UMN, 49:4 (1994), 47–74 | Zbl

[8] Lent S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Platon, Volgograd, 1996

[9] Sviridyuk G. A., Keller A. V., “Invariantnye prostranstva i dikhotomii reshenii odnogo klassa lineinykh uravnenii tipa Soboleva”, Izv. vuzov. Matem., 1997, no. 5, 60–68 | Zbl