Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 323-338

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a convex smooth antiproximinal set in any infinite-dimensional space $c_0(\Gamma)$ equipped with the Day norm; moreover, the distance function to the set is Gâteaux differentiable at each point of the complement.
@article{MZM_2006_79_3_a0,
     author = {V. S. Balaganskii},
     title = {Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm
JO  - Matematičeskie zametki
PY  - 2006
SP  - 323
EP  - 338
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/
LA  - ru
ID  - MZM_2006_79_3_a0
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm
%J Matematičeskie zametki
%D 2006
%P 323-338
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/
%G ru
%F MZM_2006_79_3_a0
V. S. Balaganskii. Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/