Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm
Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 323-338.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a convex smooth antiproximinal set in any infinite-dimensional space $c_0(\Gamma)$ equipped with the Day norm; moreover, the distance function to the set is Gâteaux differentiable at each point of the complement.
@article{MZM_2006_79_3_a0,
     author = {V. S. Balaganskii},
     title = {Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--338},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm
JO  - Matematičeskie zametki
PY  - 2006
SP  - 323
EP  - 338
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/
LA  - ru
ID  - MZM_2006_79_3_a0
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm
%J Matematičeskie zametki
%D 2006
%P 323-338
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/
%G ru
%F MZM_2006_79_3_a0
V. S. Balaganskii. Antiproximinal convex bounded sets in the space $c_0(\Gamma)$ equipped with the day norm. Matematičeskie zametki, Tome 79 (2006) no. 3, pp. 323-338. http://geodesic.mathdoc.fr/item/MZM_2006_79_3_a0/

[1] Edelstein M. A., “A note on nearest points”, Quart. J. Math., 21:84 (1970), 403–406 | DOI | MR

[2] Edelstein M. A., Thompson A. C., “Some results on nearest points and support properties of convex sets in $c_0$”, Pacific J. Math., 40:3 (1972), 553–560 | MR | Zbl

[3] Cobzaş S., “Antiproximinal sets in some Banach spaces”, Math. Balkanica, 4 (1974), 79–82 | MR | Zbl

[4] Kobzash S., “Vypuklye antiproksiminalnye mnozhestva v prostranstvakh $c_0$ i $c$”, Matem. zametki, 17:3 (1975), 449–457 | Zbl

[5] Edelstein M., “Weakly proximinal sets”, J. Approximation Theory, 18:1 (1976), 1–8 | DOI | MR | Zbl

[6] Cobzaş S., “Antiproximinal sets in Banach spaces of continuous function”, Revue d'Analyse Numerique et de la Theorie de l'Approximation, 5:2 (1976), 127–143 | Zbl

[7] Cobzaş S., “Antiproximinal sets in Banach spaces of $c_0$-type”, Revue d'Analyse Numerique et de la Theorie de l'Approximation, 7:2 (1978), 141–145 | Zbl

[8] Fonf V. P., “Ob antiproksiminalnykh mnozhestvakh v prostranstvakh nepreryvnykh funktsii na bikompaktakh”, Matem. zametki, 33:4 (1983), 549–558 | MR | Zbl

[9] Borwein J. M., “Some remarks on a paper of S. Cobzas on antiproximinal sets”, Bull. Calcutta Math. Soc., 73 (1981), 5–8 | Zbl

[10] Edelstein M. A., “Antiproximal sets”, J. Approximation Theory, 49:3 (1987), 252–255 | DOI | Zbl

[11] Fonf V. P., “O silno antiproksiminalnykh mnozhestvakh v banakhovykh prostranstvakh”, Matem. zametki, 47:2 (1990), 130–136

[12] Balaganskii V. S., “Antiproksiminalnye mnozhestva v prostranstvakh nepreryvnykh funktsii”, Matem. zametki, 60:5 (1996), 643–657 | Zbl

[13] Balaganskii V. S., “An antiproximinal set in a strictly convex space with Frechet differentiable norm”, East J. Approximation, 2:2 (1996), 131–138

[14] Distel D., Geometriya banakhovykh prostranstv. Izbrannye glavy, Vischa shkola, Kiev, 1980

[15] Holmes R. B., Geometric Functional Analysis and its Applications, Springer-Verlag, New York–Heidelberg–Berlin, 1975 | Zbl

[16] Balaganskii V. S., “Slabaya nepreryvnost metricheskoi proektsii na slabo kompaktnye mnozhestva”, Tr. in-ta matem. i mekh., 2, UrO RAN, Ekaterinburg, 1992, 42–56

[17] Danford N., Shvarts Dzh., Lineinye operatory, T. 1, IL, M., 1962

[18] Balaganskii V. S., “Approksimativnye svoistva mnozhestv s vypuklym dopolneniem”, Tr. in-ta matem. i mekh., 5, UrO RAN, Ekaterinburg, 1998, 205–226

[19] Shefer Kh., Topologicheskie vektornye prostranstva, Mir, M., 1971

[20] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979