The Heun Equation and the Darboux Transformation
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 267-277.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the Darboux transformation of the Darboux–Treibich–Verdier equation. On the basis of this transformation, we construct a generalization of the Darboux transformation to the case of the Heun equation and to other linear ordinary differential equations of second order. Examples are given.
@article{MZM_2006_79_2_a9,
     author = {Yu. N. Sirota and A. O. Smirnov},
     title = {The {Heun} {Equation} and the {Darboux} {Transformation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {267--277},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a9/}
}
TY  - JOUR
AU  - Yu. N. Sirota
AU  - A. O. Smirnov
TI  - The Heun Equation and the Darboux Transformation
JO  - Matematičeskie zametki
PY  - 2006
SP  - 267
EP  - 277
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a9/
LA  - ru
ID  - MZM_2006_79_2_a9
ER  - 
%0 Journal Article
%A Yu. N. Sirota
%A A. O. Smirnov
%T The Heun Equation and the Darboux Transformation
%J Matematičeskie zametki
%D 2006
%P 267-277
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a9/
%G ru
%F MZM_2006_79_2_a9
Yu. N. Sirota; A. O. Smirnov. The Heun Equation and the Darboux Transformation. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 267-277. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a9/

[1] Matveev V. B., Salle V. A., Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer-Verlag, 1991 | MR

[2] Dynnikov I. A., Novikov S. P., “Diskretnye simmetrii malomernykh differentsialnykh operatorov i raznostnykh operatorov na pravilnykh reshetkakh i dvumernykh mnogoobraziyakh”, UMN, 52:5 (1997), 175–234 | MR | Zbl

[3] Darboux G., Leçons sur la théorie générale des surfaces, V. II. 2 éd., Gauthier-Villars, Paris, 1915

[4] Matveev V. B., “Pozitony: medlenno ubyvayuschie analogi solitonov”, TMF, 131:1 (2002), 44–61 | MR | Zbl

[5] Humi M., Fractional Darboux transformations, , 2002 E-print math-ph/0202020 | MR

[6] Fernández D. J., Mielnik B., Rosas-Ortiz J. O., Samsonov B. F., Nonlocal SUSE deformations of periodic potentials, , 2003 E-print quant-ph/0303051

[7] Weiss J., “Period fixed points of Bäcklund transformations and the KdV equation”, J. Math. Phys., 27:11 (1986), 2647–2656 ; 28:9 (1987), 2025–2039 | DOI | MR | Zbl | DOI | MR | Zbl

[8] Veselov A. P., Shabat A. B., “Odevayuschaya tsepochka i spektralnaya teoriya operatora Shredingera”, Funktsion. analiz i ego prilozh., 27:2 (1993), 1–21 | MR | Zbl

[9] Darboux G., “Sur une équation linéaire”, C. R. Acad. Sci. Paris, 44:25 (1882), 1645–1648

[10] Treibich A., Verdier J.-L., “Solitons elliptiques”, The Grothendieck Festschrift, 3, Progr. Math., 88, Birkhäuser, Boston, MA, 1990, 437–480 | MR | Zbl

[11] Treibich A., Verdier J.-L., “Revêtements tangentiels et sommes de $4$ nombres triangulaires”, C. R. Acad. Sci. Paris. Sér. I, 311 (1990), 51–54 | MR | Zbl

[12] Treibich A., “Revêtements exceptionnels et sommes de $4$ nombres triangulaires”, Duke Math. J., 68 (1992), 217–236 | DOI | MR | Zbl

[13] Belokolos E. D., Bobenko A. I., Matveev V. B., Enolskii V. Z., “Algebrogeometricheskie printsipy superpozitsii konechnozonnykh reshenii integriruemykh nelineinykh uravnenii”, UMN, 41:2 (1986), 3–42 | MR | Zbl

[14] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Its A. R., Matveev V. B., Algebro-geometrical Approach to Nonlinear Evolution Equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin–Heidelberg–New York, 1994

[15] Belokolos E. D., Enolskii V. Z., “Ellipticheskie solitony Verde i teoriya reduktsii Veiershtrassa”, Funktsion. analiz i ego prilozh., 23:1 (1989), 57–58 | MR | Zbl

[16] Belokolos E. D., Enol'skii V. Z., “Reduction of theta function and elliptic finite-gap potentials”, Acta Appl. Math., 36 (1994), 87–117 | DOI | MR | Zbl

[17] Smirnov A. O., “Ellipticheskie resheniya uravneniya Kortevega–de Friza”, Matem. zametki, 45:6 (1989), 66–73 | Zbl

[18] Smirnov A. O., “Ellipticheskie resheniya integriruemykh nelineinykh uravnenii”, Matem. zametki, 46:5 (1989), 100–102 | MR | Zbl

[19] Smirnov A. O., “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36 (1994), 125–166 | DOI | MR | Zbl

[20] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[21] Inozemtsev V. I., “Lax representation with spectral parameter on torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR | Zbl

[22] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. I: the Bethe Ansatz method”, Comm. Math. Phys., 235 (2003), 467–494 | DOI | MR | Zbl

[23] Takemura K., On the Inozemtsev model, , 2003 E-print math-ph/0312037 | MR

[24] Smirnov A. O., “Elliptic solitons and Heun equation”, CRM Proc. Lecture Notes, 32, 2002, 287–305 | MR | Zbl

[25] Smirnov A. O., Finite-gap solutions of the Fuchsian equations, , 2003 E-print math.CA/0310465

[26] Kamke E., Spravochnik po obyknovennym differentsialnym uravneniyam, Fizmatgiz, M., 1961

[27] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, Fizmatgiz, M., 1967

[28] Heun's Differential Equations, ed. A. Ronveaux, Oxford University Press, Oxford, 1995 | MR

[29] Slavyanov S. Yu., Lay W., Special Functions, Oxford University Press, Oxford, 2000 | MR | Zbl

[30] Slavyanov S. Yu., Lai V., Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize osobennostei, Nevskii dialekt, SPb., 2002

[31] Spravochnik po spetsialnym funktsiyam, eds. M. Abramovits, I. Stigan, Nauka, M., 1979 | MR