Modified Dyadic Integral and Fractional Derivative on~$\mathbb R_+$
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 213-233
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions from the Lebesgue space $L(\mathbb R_+)$, we introduce the modified strong dyadic integral $J_\alpha$ and the fractional derivative $D^{(\alpha)}$ of order $\alpha>0$. We establish criteria for their existence for a given function $f\in L(\mathbb R_+)$. We find a countable set of eigenfunctions of the operators $D^{(\alpha)}$ and $J_\alpha$, $\alpha>0$. We also prove the relations $D^{(\alpha)}(J_\alpha(f))=f$ and $J_\alpha(D^{(\alpha)}(f))=f$ under the condition that $\int_{\mathbb R_+}f(x)\,dx=0$. We show the unboundedness of the linear operator $J_\alpha\colon L_{J_\alpha}\to L(\mathbb R_+)$, where $L_{J_\alpha}$ is its natural domain of definition. A similar assertion is proved for the operator $D^{(\alpha)}\colon L_{D^{(\alpha)}}\to L(\mathbb R_+)$. Moreover, for a function $f\in L(\mathbb R_+)$ and a given point $x\in\mathbb R_+$, we introduce the modified dyadic derivative $d^{(\alpha)}(f)(x)$ and the modified dyadic integral $j_\alpha(f)(x)$. We prove the relations$d^{(\alpha)}(J_\alpha(f))(x)=f(x)$ and $j_\alpha(D^{(\alpha)}(f))=f(x)$ at each dyadic Lebesgue point of the function $f$.
@article{MZM_2006_79_2_a5,
author = {B. I. Golubov},
title = {Modified {Dyadic} {Integral} and {Fractional} {Derivative} on~$\mathbb R_+$},
journal = {Matemati\v{c}eskie zametki},
pages = {213--233},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a5/}
}
B. I. Golubov. Modified Dyadic Integral and Fractional Derivative on~$\mathbb R_+$. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 213-233. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a5/