Modified Dyadic Integral and Fractional Derivative on~$\mathbb R_+$
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 213-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions from the Lebesgue space $L(\mathbb R_+)$, we introduce the modified strong dyadic integral $J_\alpha$ and the fractional derivative $D^{(\alpha)}$ of order $\alpha>0$. We establish criteria for their existence for a given function $f\in L(\mathbb R_+)$. We find a countable set of eigenfunctions of the operators $D^{(\alpha)}$ and $J_\alpha$, $\alpha>0$. We also prove the relations $D^{(\alpha)}(J_\alpha(f))=f$ and $J_\alpha(D^{(\alpha)}(f))=f$ under the condition that $\int_{\mathbb R_+}f(x)\,dx=0$. We show the unboundedness of the linear operator $J_\alpha\colon L_{J_\alpha}\to L(\mathbb R_+)$, where $L_{J_\alpha}$ is its natural domain of definition. A similar assertion is proved for the operator $D^{(\alpha)}\colon L_{D^{(\alpha)}}\to L(\mathbb R_+)$. Moreover, for a function $f\in L(\mathbb R_+)$ and a given point $x\in\mathbb R_+$, we introduce the modified dyadic derivative $d^{(\alpha)}(f)(x)$ and the modified dyadic integral $j_\alpha(f)(x)$. We prove the relations$d^{(\alpha)}(J_\alpha(f))(x)=f(x)$ and $j_\alpha(D^{(\alpha)}(f))=f(x)$ at each dyadic Lebesgue point of the function $f$.
@article{MZM_2006_79_2_a5,
     author = {B. I. Golubov},
     title = {Modified {Dyadic} {Integral} and {Fractional} {Derivative} on~$\mathbb R_+$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {213--233},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a5/}
}
TY  - JOUR
AU  - B. I. Golubov
TI  - Modified Dyadic Integral and Fractional Derivative on~$\mathbb R_+$
JO  - Matematičeskie zametki
PY  - 2006
SP  - 213
EP  - 233
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a5/
LA  - ru
ID  - MZM_2006_79_2_a5
ER  - 
%0 Journal Article
%A B. I. Golubov
%T Modified Dyadic Integral and Fractional Derivative on~$\mathbb R_+$
%J Matematičeskie zametki
%D 2006
%P 213-233
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a5/
%G ru
%F MZM_2006_79_2_a5
B. I. Golubov. Modified Dyadic Integral and Fractional Derivative on~$\mathbb R_+$. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 213-233. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a5/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[2] Zigmund A., Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR

[3] Sneddon I. N., The Use of Operators of Fractional Integration in Applied Mathematics, Appl. Mech. Ser., PWN, Warszawa–Poznan, 1979 | MR | Zbl

[4] Dzhrbashyan M. M., Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti, Nauka, M., 1966

[5] Butzer P. L., Nessel R. J., Fourier Analysis and Approximation. One-Dimensional Theory, V. 1, Bikhäuser-Verlag, Basel–Stuttgart, 1971 | MR

[6] Butzer P. L., Trebels W., Hilberttransformation, gebrochene Integration und Differentiation, Westdeutschen-Verlag, Köln–Opladen, 1968 | MR | Zbl

[7] Davis H. T., The Theory of Linear Operators, Principia Press, Bloomington, 1936 | Zbl

[8] Gibbs J. E., Walsh Spectrometry, a Form of Spectral Analysis Well Suited to Binary Digital Computation, Nat. Phys. Lab., Teddington, UK, 1967

[9] Fine N. J., “The generalized Walsh functions”, Trans. Amer. Math. Soc., 69 (1950), 66–77 | DOI | MR | Zbl

[10] Stanković R. S., Gibbs J. E., “Bibliography of Gibbs derivatives”, Theory and Applications of Gibbs Derivatives, Proc. First Intern. Workshop on Gibbs Derivatives (Kupari–Dubrovnik, September 26–28, 1989), Math. Institute, Beograd, 1989, XIV–XXIV

[11] Schipp F., Wade W. R., Simon P., Walsh Series. An Introduction to Dyadic Harmonic Analysis, Akademiai Kiado, Budapest, 1990 | MR

[12] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[13] Butzer P. L., Wagner H. J., “Walsh series and the concept of a derivative”, Appl. Anal., 3:1 (1973), 29–46 | DOI | MR | Zbl

[14] Butzer P. L., Wagner H. J., “A calculus for Walsh functions defined on $\mathbb R_+$”, Proc. Symp. Naval Res. Laboratory (April 18–20, 1973), Washington, DC, 75–81 | Zbl

[15] Pal J., “On the connection between the concept of a derivative defined on the dyadic field and the Walsh–Fourier transform”, Ann. Sci. Univ. Budapest. Sect. Math., 18 (1975), 49–54 | MR

[16] Wagner J. H., “On dyadic calculus for functions defined on $\mathbb R_+$”, Theory and Applications of Walsh Functions, Proc. Symp., Hatfield Polytechnic, 1975, 101–129

[17] Onneweer C. W., “Differentiation on $p$-adic or $p$-series field”, Linear Spaces and Approximation, Intern. Ser. Numer. Math., 40, Birkhäuser, Basel, 1978, 187–198 | MR

[18] Onneweer C. W., “On the definition of dyadic differentiation”, Appl. Anal., 9 (1979), 267–278 | DOI | MR | Zbl

[19] Onneweer C. W., “Fractional differentiation on the group of integers of a $p$-adic or $p$-series field”, Anal. Math., 3 (1977), 119–130 | DOI | MR | Zbl

[20] Zelin He, “The derivative and integrals of fractional order in Walsh–Fourier analysis with applications to approximation theory”, J. Approximation Theory, 39 (1983), 361–373 | DOI | MR | Zbl

[21] Onneweer C. W., “Fractional derivatives and Lipschitz spaces on local fields”, Trans. Amer. Math. Soc., 258 (1980), 923–931 | DOI | MR

[22] Golubov B. I., “O modifitsirovannom silnom dvoichnom integrale i proizvodnoi”, Matem. sb., 193:4 (2002), 37–60 | MR | Zbl

[23] Golubov B. I., “Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha”, Izv. RAN. Ser. matem., 65:3 (2001), 3–14 | MR | Zbl

[24] Golubov B. I., “Ob ogranichennosti dvoichnykh operatorov Khardi i Khardi–Littlvuda v dvoichnykh prostranstvakh $H$ i $BMO$”, Anal. Math., 26 (2000), 287–298 | DOI | MR | Zbl

[25] Golubov B. I., “Dvoichnyi analog tauberovoi teoremy Vinera i smezhnye voprosy”, Izv. RAN. Ser. matem., 67:1 (2003), 33–58 | MR | Zbl

[26] Pal J., Schipp F., “On the dyadic differentiability of dyadic integral functions on $\mathbb R^+$”, Ann. Univ. Sci. Budapest. Sect. Computatorica, 8 (1987), 91–108 | MR | Zbl

[27] Butzer P. L., Wagner H. J., “On dyadic analysis based on pointwise dyadic derivative”, Anal. Math., 1 (1975), 171–196 | DOI | MR | Zbl

[28] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[29] Schipp F., “Über einen Ableitungsbegriff von P. L. Butzer und H. J. Wagner”, Math. Balkanica, 4 (1974), 541–546 | MR | Zbl

[30] Wagner J. H., Ein Differential- und Integralkalkül in der Walsh–Fourier Analysis mit Anwendungen, Westdeutscher-Verlag, Köln–Opladen, 1974

[31] Pal J., Schipp F., “On the a.e. dyadic differentiability of dyadic integral on $\mathbb R_+$”, Theory and Applications of Gibbs Derivatives, Proc. First Intern. Workshop on Gibbs Derivatives (Kupari–Dubrovnik, September 26–28, 1989), Math. Institute, Beograd, 1989, 103–113