Functional Integrals for the Schrodinger Equation on Compact Riemannian Manifolds
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 194-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we represent the solution of the Cauchy problem for the Schrodinger equation on compact Riemannian manifolds in terms of functional integrals with respect to the Wiener measure corresponding to the Brownian motion in a manifold and with respect to the Smolyanov surface measures constructed from the Wiener measure on trajectories in the underlying space. The representation of the solution is obtained for the case of analytic (on some sets) potential and analytic initial condition under certain assumptions on the geometric characteristics of the manifold. In the proof, we use a method due to Doss and the representations via functional integrals of the solution to the Cauchy problem for the heat equation in a compact Riemannian manifold.
@article{MZM_2006_79_2_a3,
     author = {Ya. A. Butko},
     title = {Functional {Integrals} for the {Schrodinger} {Equation} on {Compact} {Riemannian} {Manifolds}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {194--200},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a3/}
}
TY  - JOUR
AU  - Ya. A. Butko
TI  - Functional Integrals for the Schrodinger Equation on Compact Riemannian Manifolds
JO  - Matematičeskie zametki
PY  - 2006
SP  - 194
EP  - 200
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a3/
LA  - ru
ID  - MZM_2006_79_2_a3
ER  - 
%0 Journal Article
%A Ya. A. Butko
%T Functional Integrals for the Schrodinger Equation on Compact Riemannian Manifolds
%J Matematičeskie zametki
%D 2006
%P 194-200
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a3/
%G ru
%F MZM_2006_79_2_a3
Ya. A. Butko. Functional Integrals for the Schrodinger Equation on Compact Riemannian Manifolds. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 194-200. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a3/

[1] fon Vaitszekker Kh., Smolyanov O. G., Vittikh O., “Diffuziya na kompaktnom rimanovom mnogoobrazii i poverkhnostnye mery”, Dokl. RAN, 371:4 (2000), 442–447 | MR

[2] fon Vaitszekker Kh., Smolyanov O. G., Vittikh O., Sidorova N. A., “Poverkhnostnye mery na traektoriyakh v rimanovykh mnogoobraziyakh, porozhdaemye diffuziyami”, Dokl. RAN, 377:4 (2001), 441–446 | MR

[3] fon Vaitszekker Kh., Vittikh O., Smolyanov O. G., Sidorova N. A., “Poverkhnostnye mery Vinera na traektoriyakh v rimanovykh mnogoobraziyakh”, Dokl. RAN, 383:4 (2002), 458–463 | MR

[4] Smolyanov O. G., von Weizsäcker H., Wittich O., “Brownian motion on a manifold as limit of stepwise conditioned standart Brownian motions”, Canad. Math. Soc. Conference Proc., 29, 2000, 589–602 | MR | Zbl

[5] Doss H., “Sur une resolution stochastique de l'équation de Schroedinger à coefficients analytiques”, Comm. Math. Phys., 73:3 (1980), 247–264 | DOI | MR | Zbl

[6] Nash J. F., “The imbedding problem for Riemannian manifolds”, Ann. Math., 63 (1956), 20–63 | DOI | MR | Zbl

[7] Butko Ya. A., “Representations of the solution of the Cauchy–Dirichlet problem for the heat equation in a domain on a compact Riemannian manifold by functional integrals”, Russ. J. Math. Phys., 11:2 (2004), 1–7 | MR

[8] Smolyanov O. G., Trumen A., “Integraly Feinmana po traektoriyam v rimanovykh mnogoobraziyakh”, Dokl. RAN, 392:2 (2003), 174–179 | MR

[9] Obrezkov O. O., “Formula Feinmana dlya resheniya zadachi Koshi–Dirikhle v ogranichennoi oblasti”, Matem. zametki, 77:2 (2005), 316–320 | MR | Zbl