Stability of Unique Solvability in an Ill-Posed Dirichlet Problem
Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 294-308
Cet article a éte moissonné depuis la source Math-Net.Ru
Suppose that $\Omega\subset\mathbb R^n$ is a compact domain with Lipschitz boundary $\partial\Omega$ which is the closure of its interior $\Omega_0$. Consider functions $\phi_i,\tau_i\colon\Omega\to\mathbb R$ belonging to the space $L_q(\Omega)$ for $q\in(1,+\infty]$ and a locally Holder mapping $F\colon\Omega\times\mathbb R\to\mathbb R$ such that $F(\,\cdot\,,0)\equiv0$ on $\Omega$. Consider two quasilinear inhomogeneous Dirichlet problems $$ \begin{cases} \Delta u_i=F(x,u_i)+\phi_i(x) & \text{on $\Omega_0$}, \\ u=\tau_i & \text{on $\partial\Omega$}, \end{cases} \qquad i=1,2. $$ In this paper, we study the following problem: Under certain conditions on the function $F$ generally not ensuring either the uniqueness or the existence of solutions in these problems, estimate the deviation of the solutions $u_i$ (assuming that they exist) from each other in the uniform metric, using additional information about the solutions $u_i$ . Here we assume that the solutions are continuous, although their continuity is a consequence of the constraints imposed on $F$, $\tau_i$, $\phi_i$. For the additional information on the solutions $u_i$, $i=1,2$ we take their values on the grid; in particular, we show that if their values are identical on some finite grid, then these functions coincide on $\Omega$.
@article{MZM_2006_79_2_a12,
author = {I. G. Tsar'kov},
title = {Stability of {Unique} {Solvability} in an {Ill-Posed} {Dirichlet} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {294--308},
year = {2006},
volume = {79},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a12/}
}
I. G. Tsar'kov. Stability of Unique Solvability in an Ill-Posed Dirichlet Problem. Matematičeskie zametki, Tome 79 (2006) no. 2, pp. 294-308. http://geodesic.mathdoc.fr/item/MZM_2006_79_2_a12/
[1] Pokhozhaev S. I., “O sobstvennykh funktsiyakh uravneniya $\Delta u+\lambda f(u)=0$”, Dokl. AN SSSR, 165:1 (1965), 36–39 | Zbl
[2] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 | MR | Zbl
[3] Pokhozhaev S. I., “O uravneniyakh vida $\Delta u=f(x,u,Du)$”, Matem. sb., 113 (155):2 (10) (1980), 324–338 | MR | Zbl