Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 120-126.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the equivalence of two sets of transition points corresponding to solutions of singularly perturbed boundary-value problems with interior boundary layers. The first set appears in the formalism for constructing the asymptotics of the solution of a boundary-value problem and the second, in the direct scheme formalism for constructing the asymptotics of the solution of a variational problem.
@article{MZM_2006_79_1_a9,
     author = {Ni Ming Kang and A. B. Vasil'eva and M. G. Dmitriev},
     title = {Equivalence of {Two} {Sets} of {Transition} {Points} {Corresponding} to {Solutions} with {Interior} {Transition} {Layers}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {120--126},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a9/}
}
TY  - JOUR
AU  - Ni Ming Kang
AU  - A. B. Vasil'eva
AU  - M. G. Dmitriev
TI  - Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers
JO  - Matematičeskie zametki
PY  - 2006
SP  - 120
EP  - 126
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a9/
LA  - ru
ID  - MZM_2006_79_1_a9
ER  - 
%0 Journal Article
%A Ni Ming Kang
%A A. B. Vasil'eva
%A M. G. Dmitriev
%T Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers
%J Matematičeskie zametki
%D 2006
%P 120-126
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a9/
%G ru
%F MZM_2006_79_1_a9
Ni Ming Kang; A. B. Vasil'eva; M. G. Dmitriev. Equivalence of Two Sets of Transition Points Corresponding to Solutions with Interior Transition Layers. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 120-126. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a9/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR

[2] Butuzov V. F., Vasileva A. B., Nefedov N. N., “Asimptoticheskaya teoriya kontrastnykh struktur”, obzor, Avtomatika i telemekhanika, 1997, no. 7, 4–32 | MR | Zbl

[3] Ni Min Kan, Dmitriev M. G., “Kontrastnye struktury v prosteishei vektornoi variatsionnoi zadache i ikh asimptotika”, Avtomatika i telemekhanika, 1998, no. 5, 41–52

[4] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[5] Belokopytov S. V., Dmitriev M. G., “Pryamoi metod resheniya zadach optimalnogo upravleniya s bystrymi i medlennymi dvizheniyami”, Izv. AN SSSR. Ser. tekhn. kibernet., 1985, no. 3, 147–152 | MR | Zbl