On an Identity of Mahler
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 107-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that certain multiple integrals depending on the complex parameter $z$ can be expressed as polynomials in $z$ and $\ln(1-z)$. Similar identities were first used by K. Mahler in connection with the proofs of certain results of the theory of transcendental numbers.
@article{MZM_2006_79_1_a8,
     author = {Yu. V. Nesterenko},
     title = {On an {Identity} of {Mahler}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {107--119},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a8/}
}
TY  - JOUR
AU  - Yu. V. Nesterenko
TI  - On an Identity of Mahler
JO  - Matematičeskie zametki
PY  - 2006
SP  - 107
EP  - 119
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a8/
LA  - ru
ID  - MZM_2006_79_1_a8
ER  - 
%0 Journal Article
%A Yu. V. Nesterenko
%T On an Identity of Mahler
%J Matematičeskie zametki
%D 2006
%P 107-119
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a8/
%G ru
%F MZM_2006_79_1_a8
Yu. V. Nesterenko. On an Identity of Mahler. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 107-119. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a8/

[1] Zudilin V. V., “Algebraicheskie sootnosheniya dlya kratnykh dzeta-znachenii”, UMN, 58:1 (2003), 3–32 | MR | Zbl

[2] Ulanskii E. A., “Tozhdestva dlya obobschennykh polilogarifmov”, Matem. zametki, 73:4 (2003), 613–624 | MR | Zbl

[3] Sorokin V. N., “O teoreme Aperi”, Vestn. MGU. Ser. 1. Matem., mekh., 1998, no. 3, 48–53 | MR | Zbl

[4] Sorokin V. N., “O mere transtsendentnosti chisla $\pi^2$”, Matem. sb., 187:12 (1996), 87–120 | MR | Zbl

[5] Nesterenko Yu. V., “Integralnye tozhdestva i konstruktsii sovmestnykh priblizhenii k znacheniyam dzeta-funktsii Rimana”, Trudy IV Mezhdunarodnoi konferentsii “Sovremennye problemy teorii chisel i ee prilozheniya” (g. Tula, 2001 g.), Izd. mekh.-mat. fak-ta MGU, M., 2002, 115–132 | MR

[6] Rivoal T., “La fonction zéta de Riemann prend une infinité de valeurs irrationelles aux entiers impairs”, C. R. Acad. Sci. Paris Sér. 1 Math., 331:4 (2000), 267–270 | MR | Zbl

[7] Zlobin S. A., “Razlozheniya kratnykh integralov v lineinye formy”, Dokl. RAN, 398:5 (2004), 595–598 | MR

[8] Zlobin S. A., “Integraly, predstavimye v vide lineinykh form ot obobschennykh polilogarifmov”, Matem. zametki, 71:5 (2002), 782–787 | MR | Zbl

[9] Mahler K., “Ein Beweis des Thue–Siegelschen Satzes über die Approximation algebraischer Zahlen für binomische Gleichungen”, Math. Ann., 105 (1931), 267–276 | DOI | MR | Zbl

[10] Baker A., “Simultaneous rational approximations to certain algebraic numbers”, Proc. Cambridge Philos. Soc., 63 (1967), 693–702 | DOI | MR | Zbl

[11] Mahler K., “Zur Approximation der Exponentialfunction und des Logarithmus”, J. Reine Angew. Math., 166 (1932), 118–150

[12] Lyuk Yu., Spetsialnye matematicheskie funktsii i ikh approksimatsii, Mir, M., 1980

[13] Jager H., “A multidimensional generalization of the Pade table”, Indag. Math., 26 (1964), 193–249 | MR