Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 45-59
Voir la notice de l'article provenant de la source Math-Net.Ru
The Berlekamp–Massey algorithm (further, the BMA) is interpreted as an algorithm for constructing Padé approximations to the Laurent series over an arbitrary field with singularity at infinity. It is shown that the BMA is an iterative procedure for constructing the sequence of polynomials orthogonal to the corresponding space of polynomials with respect to the inner product determined by the given series. The BMA is used to expand the exponential in continued fractions and calculate its Pade approximations.
@article{MZM_2006_79_1_a3,
author = {S. B. Gashkov and I. B. Gashkov},
title = {Berlekamp--Massey {Algorithm,} {Continued} {Fractions,} {Pad\'e} {Approximations,} and {Orthogonal} {Polynomials}},
journal = {Matemati\v{c}eskie zametki},
pages = {45--59},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/}
}
TY - JOUR AU - S. B. Gashkov AU - I. B. Gashkov TI - Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials JO - Matematičeskie zametki PY - 2006 SP - 45 EP - 59 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/ LA - ru ID - MZM_2006_79_1_a3 ER -
S. B. Gashkov; I. B. Gashkov. Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/