Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 45-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Berlekamp–Massey algorithm (further, the BMA) is interpreted as an algorithm for constructing Padé approximations to the Laurent series over an arbitrary field with singularity at infinity. It is shown that the BMA is an iterative procedure for constructing the sequence of polynomials orthogonal to the corresponding space of polynomials with respect to the inner product determined by the given series. The BMA is used to expand the exponential in continued fractions and calculate its Pade approximations.
@article{MZM_2006_79_1_a3,
     author = {S. B. Gashkov and I. B. Gashkov},
     title = {Berlekamp--Massey {Algorithm,} {Continued} {Fractions,} {Pad\'e} {Approximations,} and {Orthogonal} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {45--59},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/}
}
TY  - JOUR
AU  - S. B. Gashkov
AU  - I. B. Gashkov
TI  - Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials
JO  - Matematičeskie zametki
PY  - 2006
SP  - 45
EP  - 59
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/
LA  - ru
ID  - MZM_2006_79_1_a3
ER  - 
%0 Journal Article
%A S. B. Gashkov
%A I. B. Gashkov
%T Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials
%J Matematičeskie zametki
%D 2006
%P 45-59
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/
%G ru
%F MZM_2006_79_1_a3
S. B. Gashkov; I. B. Gashkov. Berlekamp--Massey Algorithm, Continued Fractions, Pad\'e Approximations, and Orthogonal Polynomials. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 45-59. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a3/

[1] Jungnickel D., Finite fields. Structure and arithmetic, Wissenschaftsverlag, Mannheim–Leipzig–Wien–Zurich, 1993 | MR | Zbl

[2] Bleikhut R. E., Teoriya i praktika kodov, kontroliruyuschikh oshibki, Mir, M., 1986 | MR

[3] Massey J. L., “Feedback Shift Register Synthesis and BCH decoding”, IEEE Trans. Inform. Theory, IT-15 (1969), 122–128 | DOI | MR

[4] Berlekemp E. R., Algebraicheskaya teoriya kodirovaniya, Mir, M., 1972 | MR

[5] Dornstetter J. L., “On the equivalence between Berlekamp's and Euclid's algorithms”, IEEE Trans. Inform. Theory, IT-33:3 (1987), 428–431 | DOI | MR

[6] Sugiyama Y., Kasahara M., Hirasawa S., Namekawa T., “A method for solving key equation for decoding Goppa codes”, Inform. Control, 27:1 (1975), 87–99 | DOI | MR | Zbl

[7] Welch L. R., Scholtz R. A., “Continued fractions and Berlekamp's algorithm”, IEEE Trans. Inform. Theory, IT-25:1 (1979), 18–27 | MR

[8] Cheng U., “On the continued fractions and Berlekamp's algorithm”, IEEE Trans. Inform. Theory, IT-30:3 (1984), 541–544 | DOI | MR

[9] Mills W. H., “Continued fractions and linear recurrence”, Math. Comp., 29 (1975), 173–180 | DOI | MR | Zbl

[10] Zongduo Dai, Kencheng Zeng, “Continued fractions and Berlekamp–Massey algorithm”, Advances in Cryptology—Auscript-90, Springer-Verlag, Berlin, 1990, 24–31 | MR

[11] Nikishin E. M., Sorokin V. N., Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988 | MR | Zbl

[12] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[13] Sidelnikov V. M., “Dekodirovanie kodov Rida–Solomona s chislom oshibok bolshim chem $(d-1)/2$ i nuli polinomov neskolkikh peremennykh”, Problemy peredachi informatsii, 30:1 (1994), 51–69 | MR

[14] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika, Mir, M., 1998