Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line
Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 3-18
Voir la notice de l'article provenant de la source Math-Net.Ru
The class of contraction cocycles which can be dilated to unitary Markovian cocycles of a translation group $S$ on the straight line is introduced. The class of cocycle perturbations of $S$ by unitary Markovian cocycles $W$ with the property $W_t-I\in\mathscr S_2$ (the Hilbert–Schmidt class) is investigated. The results are applied to perturbations of Kolmogorov flows on hyperfinite factors generated by the algebra of canonical anticommutation relations.
@article{MZM_2006_79_1_a0,
author = {G. G. Amosov and A. D. Baranov},
title = {Dilations of {Contraction} {Cocycles} and {Cocycle} {Perturbations} of the {Translation} {Group} of the {Line}},
journal = {Matemati\v{c}eskie zametki},
pages = {3--18},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a0/}
}
TY - JOUR AU - G. G. Amosov AU - A. D. Baranov TI - Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line JO - Matematičeskie zametki PY - 2006 SP - 3 EP - 18 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a0/ LA - ru ID - MZM_2006_79_1_a0 ER -
G. G. Amosov; A. D. Baranov. Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line. Matematičeskie zametki, Tome 79 (2006) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/MZM_2006_79_1_a0/