On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 907-918

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear parabolic problem in a separable Hilbert space is solved approximately by the projection-difference method. The problem is discretized in space by the Galerkin method orientated towards finite-dimensional subspaces of finite-element type and in time by using the implicit Euler method and the modified Crank–Nicolson scheme. We establish uniform (with respect to the time grid) and mean-square (in space) error estimates for the approximate solutions. These estimates characterize the rate of convergence of errors to zero with respect to both the time and space variables.
@article{MZM_2005_78_6_a9,
     author = {V. V. Smagin},
     title = {On the {Rate} of {Convergence} of {Projection-Difference} {Methods} for {Smoothly} {Solvable} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {907--918},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/}
}
TY  - JOUR
AU  - V. V. Smagin
TI  - On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 907
EP  - 918
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/
LA  - ru
ID  - MZM_2005_78_6_a9
ER  - 
%0 Journal Article
%A V. V. Smagin
%T On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations
%J Matematičeskie zametki
%D 2005
%P 907-918
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/
%G ru
%F MZM_2005_78_6_a9
V. V. Smagin. On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 907-918. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/