On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 907-918.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear parabolic problem in a separable Hilbert space is solved approximately by the projection-difference method. The problem is discretized in space by the Galerkin method orientated towards finite-dimensional subspaces of finite-element type and in time by using the implicit Euler method and the modified Crank–Nicolson scheme. We establish uniform (with respect to the time grid) and mean-square (in space) error estimates for the approximate solutions. These estimates characterize the rate of convergence of errors to zero with respect to both the time and space variables.
@article{MZM_2005_78_6_a9,
     author = {V. V. Smagin},
     title = {On the {Rate} of {Convergence} of {Projection-Difference} {Methods} for {Smoothly} {Solvable} {Parabolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {907--918},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/}
}
TY  - JOUR
AU  - V. V. Smagin
TI  - On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 907
EP  - 918
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/
LA  - ru
ID  - MZM_2005_78_6_a9
ER  - 
%0 Journal Article
%A V. V. Smagin
%T On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations
%J Matematičeskie zametki
%D 2005
%P 907-918
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/
%G ru
%F MZM_2005_78_6_a9
V. V. Smagin. On the Rate of Convergence of Projection-Difference Methods for Smoothly Solvable Parabolic Equations. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 907-918. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a9/

[1] Smagin V. V., “Otsenki v silnykh normakh pogreshnosti proektsionno-raznostnogo metoda priblizhennogo resheniya abstraktnogo parabolicheskogo uravneniya”, Matem. zametki, 62:6 (1997), 898–909 | MR | Zbl

[2] Smagin V. V., “Otsenki v silnykh normakh pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii s modifitsirovannoi skhemoi Kranka–Nikolson”, Matem. zametki, 74:6 (2003), 913–923 | Zbl

[3] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160

[4] Smagin V. V., “Srednekvadratichnye otsenki pogreshnosti proektsionno-raznostnogo metoda dlya parabolicheskikh uravnenii”, ZhVMiMF, 40:6 (2000), 908–919 | Zbl

[5] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980

[6] Smagin V. V., “Otsenki pogreshnosti poludiskretnykh priblizhenii po Galerkinu dlya parabolicheskikh uravnenii s kraevym usloviem tipa Neimana”, Izv. vuzov. Ser. matem., 1996, no. 3 (406), 50–57 | Zbl

[7] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Nauka, M., 1981 | MR

[8] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[9] Smagin V. V., “O razreshimosti abstraktnogo parabolicheskogo uravneniya s operatorom, oblast opredeleniya kotorogo zavisit ot vremeni”, Differents. uravneniya, 32:5 (1996), 711–712 | MR | Zbl

[10] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. uravneniya, 11:7 (1975), 1269–1277 | Zbl