A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 892-906.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1894, Pincherle proved a theorem relating the existence of a minimal solution of three-term recursion relations to the convergence of a continued fraction. The present paper deals with solutions of an infinite system $$ q_n=\sum_{j=1}^{k-1}p_{k-j,n}q_{n-j}, \qquad p_{1,n}\ne0, \quad n=0,1,\dots, $$ of $k$-term recursion relations with coefficients in a field $F$. We study the connection between such relations and multidimensional ($(k-2)$-dimensional) continued fractions. A multidimensional analog of Pincherle's theorem is established.
@article{MZM_2005_78_6_a8,
     author = {V. I. Parusnikov},
     title = {A {Generalization} of {Pincherle's} {Theorem} to $k${-Term} {Recursion} {Relations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {892--906},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/}
}
TY  - JOUR
AU  - V. I. Parusnikov
TI  - A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 892
EP  - 906
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/
LA  - ru
ID  - MZM_2005_78_6_a8
ER  - 
%0 Journal Article
%A V. I. Parusnikov
%T A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations
%J Matematičeskie zametki
%D 2005
%P 892-906
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/
%G ru
%F MZM_2005_78_6_a8
V. I. Parusnikov. A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 892-906. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/

[1] Gautschi W., “Computational aspects of three-term recurrence relations”, SIAM Review, 9 (1967), 24–82 | DOI | MR | Zbl

[2] Pincherle S., “Delle funzioni ipergeometriche e di varie questioni ad esse attinenti”, Giorn. Mat. Battaglini, 32 (1894), 209–291

[3] Dzhouns U., Tron V., Nepreryvnye drobi. Analiticheskaya teoriya i prilozheniya, Mir, M., 1985 | MR

[4] Parusnikov V. I., Obobschenie teoremy Pinkerle dlya $k$-chlennykh rekurrentnykh sootnoshenii, Preprint No. 87, IPM im. M. V. Keldysha RAN, M., 2000

[5] Jacobi C. G. J., “Allgemeine Theorie der kettenbruchänlichen Algorithmen, in welchen jede Zahl aus drei vorhergehenden gebildet wird”, J. Reine Angew. Math., 69 (1868), 29–64

[6] Euler L., “De relatione inter ternas pluresve quantitates instituenda”, Petersburger Akademie Notiz, Exhib. August 14, 1775

[7] Perron O., “Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus”, Math. Ann., 64:6 (1907), 1–76 | DOI

[8] Paley R. E. A. C., Ursell H. D., “Continued fractions in several dimensions”, Proc. Cambridge Phil. Soc., 26:2 (1930), 127–144 | DOI

[9] Parusnikov V. I., “Algoritm Yakobi–Perrona i sovmestnoe priblizhenie funktsii”, Matem. sb., 114 (156):2 (1981), 322–333 | Zbl

[10] de Bruijn M. G., “The interruption phenomenon for generalized continued fractions”, Bull. Austral. Math. Soc., 19:2 (1978), 245–272 | DOI

[11] Gelfond A. O., Ischislenie konechnykh raznostei, 3-e izd., Nauka, M., 1967

[12] Parusnikov V. I., Predelno periodicheskie mnogomernye nepreryvnye drobi, Preprint No. 62, IPM im. M. V. Keldysha RAN, M., 1983

[13] Parusnikov V. I., “On the convergence of the multidimensional limit-periodic continued fractions”, Lect. Notes in Math., no. 1237, 1985, 217–227