A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 892-906

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1894, Pincherle proved a theorem relating the existence of a minimal solution of three-term recursion relations to the convergence of a continued fraction. The present paper deals with solutions of an infinite system $$ q_n=\sum_{j=1}^{k-1}p_{k-j,n}q_{n-j}, \qquad p_{1,n}\ne0, \quad n=0,1,\dots, $$ of $k$-term recursion relations with coefficients in a field $F$. We study the connection between such relations and multidimensional ($(k-2)$-dimensional) continued fractions. A multidimensional analog of Pincherle's theorem is established.
@article{MZM_2005_78_6_a8,
     author = {V. I. Parusnikov},
     title = {A {Generalization} of {Pincherle's} {Theorem} to $k${-Term} {Recursion} {Relations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {892--906},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/}
}
TY  - JOUR
AU  - V. I. Parusnikov
TI  - A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations
JO  - Matematičeskie zametki
PY  - 2005
SP  - 892
EP  - 906
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/
LA  - ru
ID  - MZM_2005_78_6_a8
ER  - 
%0 Journal Article
%A V. I. Parusnikov
%T A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations
%J Matematičeskie zametki
%D 2005
%P 892-906
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/
%G ru
%F MZM_2005_78_6_a8
V. I. Parusnikov. A Generalization of Pincherle's Theorem to $k$-Term Recursion Relations. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 892-906. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a8/