Antinilpotent Lie Algebras
Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 803-812.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of antinilpotent Lie algebras closely related to the problem of constructing solutions with constant coefficients for the Yang–Mills equation is considered. A complete description of the antinilpotent Lie algebras is given. A Lie algebra is said to be antinilpotent if any of its nilpotent subalgebras is Abelian. The Yang-Mills equation with coefficients in a Lie algebra $L$ has nontrivial solutions with constant coefficients if and only if the Lie algebra $L$ is not antinilpotent. In Theorem 1, a description of all semisimple real antinilpotent Lie algebras is given. In Theorem 2, the problem of describing the antinilpotent Lie algebras is completely reduced to the case of semisimple Lie algebras (treated in Theorem 1) and solvable Lie algebras. The description of solvable antinilpotent Lie algebras is given in Theorem 3.
@article{MZM_2005_78_6_a0,
     author = {V. V. Gorbatsevich},
     title = {Antinilpotent {Lie} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--812},
     publisher = {mathdoc},
     volume = {78},
     number = {6},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a0/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - Antinilpotent Lie Algebras
JO  - Matematičeskie zametki
PY  - 2005
SP  - 803
EP  - 812
VL  - 78
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a0/
LA  - ru
ID  - MZM_2005_78_6_a0
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T Antinilpotent Lie Algebras
%J Matematičeskie zametki
%D 2005
%P 803-812
%V 78
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a0/
%G ru
%F MZM_2005_78_6_a0
V. V. Gorbatsevich. Antinilpotent Lie Algebras. Matematičeskie zametki, Tome 78 (2005) no. 6, pp. 803-812. http://geodesic.mathdoc.fr/item/MZM_2005_78_6_a0/

[1] Dallmer E., “On Lie algebras all nilpotent subalgebras of which are Abelian”, J. Math. Phys., 40:8 (1999), 4151–4156 | DOI | MR | Zbl

[2] Vinberg E. B., Onischik A. L., Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988

[3] Frid D., Ulenbek K., Instantony i chetyrekhmernye mnogoobraziya, Mir, M., 1988 | MR

[4] Kirillov A. A., “Unitarnye predstavleniya nilpotentnykh grupp Li”, UMN, 17:4 (1962), 57–110 | MR | Zbl

[5] Raikhshtein B. Z., “Ob algebrakh Li odnogo klassa”, Uchenye zapiski Yaroslavskogo gos. ped. in-ta, 1967, no. 61, 104–106

[6] Burbaki N., Gruppy i algeby Li, Gl. I–III, Mir, M., 1976

[7] Dzhekobson N., Algebry Li, Mir, M., 1964