Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side
Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 763-772.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $\mathbb R^n$ is the $p$-dimensional space with Euclidean norm ${\|\cdot\|}$, $K(\mathbb R^p)$ is the set of nonempty compact sets in $\mathbb R^p$, $\mathbb R_+=0,+\infty)$, $D=\mathbb R_+\times\mathbb R^m\times\mathbb R^n\times[0,a]$, $D_0=\mathbb R_+\times\mathbb R^m$, $F_0\colon D_0\to K(\mathbb R^m)$, and $\operatorname{co}F_0$ is the convex cover of the mapping $F_0$. We consider the Cauchy problem for the system of differential inclusions $$ \dot x\in\mu F(t,x,y,\mu),\quad \dot y\in G(t,x,y,\mu),\qquad x(0)=x_0,\quad y(0)=y_0 $$ with slow $x$ and fast $y$ variables; here $F\colon D\to K(\mathbb R^m)$, $G\colon D\to K(\mathbb R^n)$, and $\mu\in[0,a]$ is a small parameter. It is assumed that this problem has at least one solution on $[0,1/\mu]$ for all sufficiently small $\mu\in[0,a]$. Under certain conditions on $F$, $G$, and $F_0$, comprising both the usual conditions for approximation problems and some new ones (which are weaker than the Lipschitz property), it is proved that, for any $\varepsilon>0$, there is a $\mu_0>0$ such that for any $\mu\in(0,\mu_0]$ and any solution $(x_\mu(t),y_\mu(t))$ of the problem under consideration, there exists a solution $u_\mu(t)$ of the problem $\dot u\in\mu\operatorname{co}F_0(t,u)$, $u(0)=x_0$ for which the inequality $\|x_\mu(t)-u_\mu(t)\|\varepsilon$ holds for each $t\in[0,1/\mu]$.
@article{MZM_2005_78_5_a11,
     author = {E. V. Sokolovskaya and O. P. Filatov},
     title = {Approximation from {Above} of {Systems} of {Differential} {Inclusions} with {Non-Lipschitzian} {Right-Hand} {Side}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {763--772},
     publisher = {mathdoc},
     volume = {78},
     number = {5},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a11/}
}
TY  - JOUR
AU  - E. V. Sokolovskaya
AU  - O. P. Filatov
TI  - Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side
JO  - Matematičeskie zametki
PY  - 2005
SP  - 763
EP  - 772
VL  - 78
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a11/
LA  - ru
ID  - MZM_2005_78_5_a11
ER  - 
%0 Journal Article
%A E. V. Sokolovskaya
%A O. P. Filatov
%T Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side
%J Matematičeskie zametki
%D 2005
%P 763-772
%V 78
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a11/
%G ru
%F MZM_2005_78_5_a11
E. V. Sokolovskaya; O. P. Filatov. Approximation from Above of Systems of Differential Inclusions with Non-Lipschitzian Right-Hand Side. Matematičeskie zametki, Tome 78 (2005) no. 5, pp. 763-772. http://geodesic.mathdoc.fr/item/MZM_2005_78_5_a11/

[1] Filatov O. P., Khapaev M. M., Usrednenie sistem differentsialnykh vklyuchenii, Izd-vo MGU, M., 1998 | MR

[2] Filatov O. P., Khapaev M. M., “Usrednenie differentsialnykh vklyuchenii s “bystrymi” i “medlennymi” peremennymi”, Matem. zametki, 47:6 (1990), 102–109 | MR | Zbl

[3] Filatov O. P., Khapaev M. M., “O vzaimnoi $\varepsilon$-approksimatsii reshenii sistemy differentsialnykh vklyuchenii i usrednennogo vklyucheniya”, Matem. zametki, 47:5 (1990), 127–134 | MR | Zbl

[4] Plotnikov V. A., Plotnikov A. V., Vityuk A. N., Differentsialnye uravneniya s mnogoznachnoi pravoi chastyu. Asimptoticheskie metody, Astroprint, Odessa, 1999 | MR

[5] Donchev T., Slavov I., “Averaging method for one-sided Lipschitz differential inclusions with generalized solutions”, SIAM J. Control Optimization, 37:5 (1999), 1600–1613 | DOI | MR | Zbl

[6] Donchev T., Farkhi E., “Stability and Euler approximation of one-sided Lipschitz differential inclusions”, SIAM J. Control Optimization, 36:2 (1998), 780–796 | DOI | Zbl

[7] Krasnoselskii M. A., Krein S. G., “Nelokalnye teoremy suschestvovaniya i teoremy edinstvennosti dlya sistem obyknovennykh differentsialnykh uravnenii”, Dokl. AN SSSR, 102:1 (1955), 13–16 | MR

[8] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, Nauka, M., 1985, 194–252 | Zbl