Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2005_78_4_a7, author = {A. G. Kuznetsov}, title = {Derived {Categories} of {Fano} {Threefolds} $V_{12}$}, journal = {Matemati\v{c}eskie zametki}, pages = {579--594}, publisher = {mathdoc}, volume = {78}, number = {4}, year = {2005}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a7/} }
A. G. Kuznetsov. Derived Categories of Fano Threefolds $V_{12}$. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 579-594. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a7/
[1] Kuznetsov A. G., Fano threefolds $V_{22}$, Preprint MPI 1997-24, MPI, Bonn, 1997
[2] Kuznetsov A. G., “Proizvodnaya kategoriya trekhmernoi kubiki i mnogoobraziya $V_{14}$”, Tr. MIAN, 246, Nauka, M., 2004, 183–207 | MR | Zbl
[3] Mukai S., “Fano $3$-folds”, Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Notes Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263 | MR
[4] Iliev A., Markushevich D., “Elliptic curves and rank $2$ vector bundles on the prime Fano threefolds of genus $7$”, Adv. Geom., 4:3 (2004), 287–318 | DOI | MR | Zbl
[5] Bridgeland T., “Equivalences of triangulated categories and Fourier–Mukai transforms”, Bull. London Math. Soc., 31:1 (1999), 25–34 | DOI | MR | Zbl
[6] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano. I; II”, Izv. AN SSSR. Ser. matem., 41 (1977), 516–562 ; 42 (1978), 506–549 | Zbl | Zbl
[7] Iskovskikh V. A., Prokhorov Yu. G., Algebraic Geometry. V. Fano Varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1998
[8] Demazure M., “A very simple proof of Bott's theorem”, Invent. Math., 33:3 (1976), 271–272 | DOI | Zbl
[9] Bondal A., Orlov D., Semiorthogonal decompositions for algebraic varieties, Preprint MPI 1995-15, MPI, Bonn, 1995; E-print math.AG/9506012
[10] Iliev A., Markushevich D., Parametrization of $\mathrm{Sing}(\Theta)$ for a Fano $3$-fold of genus $7$ by moduli of vector bundles, , 2004 E-print math.AG/0403122