Derived Categories of Fano Threefolds $V_{12}$
Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 579-594.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we give a description of the derived category of coherent sheaves on a Fano threefold of index 1 and degree 12 (the variety $V_{12}$). It can easily be shown that if $X$ is a $V_{12}$ variety, then its derived category contains an exceptional pair of vector bundles $(\mathscr U,\mathscr O_X)$, where $\mathscr O_X$ is the trivial bundle, and $\mathscr U$ is the Mukai bundle of rank 5 (which induces the embedding $X\to\operatorname{Gr}(5,10)$). The orthogonal subcategory $\mathscr A_X={}^\perp\left\mathscr U,\mathscr O\right>\subset\mathscr D^b(X)$ can be treated as the nontrivial part of the derived category of $X$. The main result of the present paper is the construction of the category equivalence $\mathscr A_X\cong\mathscr D^b(C^\vee)$, where $C^\vee$ is the curve of genus 7 which can be canonically associated to $X$ according to the results due to Iliev and Markushevich. In the construction of the equivalence, we make use of the geometric results due to Iliev and Markushevich, as well as the Bondal and Orlov results about derived categories. As an application, we prove that the Fano surface of $X$ (which is the surface parametrizing conics on $X$) is isomorphicto $S^2C^\vee$, the symmetric square of the corresponding curve of genus 7.
@article{MZM_2005_78_4_a7,
     author = {A. G. Kuznetsov},
     title = {Derived {Categories} of {Fano} {Threefolds} $V_{12}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {579--594},
     publisher = {mathdoc},
     volume = {78},
     number = {4},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a7/}
}
TY  - JOUR
AU  - A. G. Kuznetsov
TI  - Derived Categories of Fano Threefolds $V_{12}$
JO  - Matematičeskie zametki
PY  - 2005
SP  - 579
EP  - 594
VL  - 78
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a7/
LA  - ru
ID  - MZM_2005_78_4_a7
ER  - 
%0 Journal Article
%A A. G. Kuznetsov
%T Derived Categories of Fano Threefolds $V_{12}$
%J Matematičeskie zametki
%D 2005
%P 579-594
%V 78
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a7/
%G ru
%F MZM_2005_78_4_a7
A. G. Kuznetsov. Derived Categories of Fano Threefolds $V_{12}$. Matematičeskie zametki, Tome 78 (2005) no. 4, pp. 579-594. http://geodesic.mathdoc.fr/item/MZM_2005_78_4_a7/

[1] Kuznetsov A. G., Fano threefolds $V_{22}$, Preprint MPI 1997-24, MPI, Bonn, 1997

[2] Kuznetsov A. G., “Proizvodnaya kategoriya trekhmernoi kubiki i mnogoobraziya $V_{14}$”, Tr. MIAN, 246, Nauka, M., 2004, 183–207 | MR | Zbl

[3] Mukai S., “Fano $3$-folds”, Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Notes Ser., 179, Cambridge Univ. Press, Cambridge, 1992, 255–263 | MR

[4] Iliev A., Markushevich D., “Elliptic curves and rank $2$ vector bundles on the prime Fano threefolds of genus $7$”, Adv. Geom., 4:3 (2004), 287–318 | DOI | MR | Zbl

[5] Bridgeland T., “Equivalences of triangulated categories and Fourier–Mukai transforms”, Bull. London Math. Soc., 31:1 (1999), 25–34 | DOI | MR | Zbl

[6] Iskovskikh V. A., “Trekhmernye mnogoobraziya Fano. I; II”, Izv. AN SSSR. Ser. matem., 41 (1977), 516–562 ; 42 (1978), 506–549 | Zbl | Zbl

[7] Iskovskikh V. A., Prokhorov Yu. G., Algebraic Geometry. V. Fano Varieties, Encyclopaedia Math. Sci., 47, Springer-Verlag, Berlin, 1998

[8] Demazure M., “A very simple proof of Bott's theorem”, Invent. Math., 33:3 (1976), 271–272 | DOI | Zbl

[9] Bondal A., Orlov D., Semiorthogonal decompositions for algebraic varieties, Preprint MPI 1995-15, MPI, Bonn, 1995; E-print math.AG/9506012

[10] Iliev A., Markushevich D., Parametrization of $\mathrm{Sing}(\Theta)$ for a Fano $3$-fold of genus $7$ by moduli of vector bundles, , 2004 E-print math.AG/0403122